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Abstract

The Sufficient Instruments Filter (SIF) is a novel five-layered deep learning-based tractable

procedure to filter out sufficient information from many instruments for estimating parame-

ters in regression models with endogenous regressors. Our method draws its merit from three

key properties: the ability to incorporate supervision, the flexibility to accommodate non-

linearity, and the capability for sufficient dimension reduction. We show that our method

is consistent and asymptotically normal when many instruments are correlated. Simulation

exercises show that this method consistently achieves lower bias and root mean squared error

compared to competing benchmarks, across many specifications. We further validate our

approach with two real-world applications in industrial organization and finance, yielding

meaningful insights into causal relationships. Our method remains robust when the number

of instruments exceeds the sample size, and performs well with weak and even invalid ob-

served instruments, as long as there exists at least one linear combination of common factors

among the observed instruments that serves as a valid instrument.

keywords: Causal Inference, High-dimensions, Instrumental Variables, Dimension Reduc-

tion, Non-parametric, Supervised Learning.

1 Introduction

The instrumental variable (IV) approach is a cornerstone in addressing endogeneity issues in

econometrics. When faced with a large set of instruments, standard two-staged least square

(2SLS) estimator becomes inconsistent as noted in Bekker (1994). Another key challenge is the
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potential presence of weak instruments, where many instruments exhibit only a weak correlation

with the endogenous regressor. This phenomenon, known as the weak instrument problem,

leads to invalid inference since the 2SLS estimator’s asymptotic distribution begins to resemble

a Cauchy distribution, which is non-normal and has undefined moments (Phillips (1989), Staiger

& Stock (1997)).

Two prominent strategies have emerged in the literature to harness them for causal infer-

ence. The first assumes sparsity, positing that only a subset of instruments is valid, as discussed

in Belloni et al. (2012). The second approach, as in Kapetanios & Marcellino (2010), Bai &

Ng (2010) leverages the idea that instruments share common components. Both approaches,

however, are restricted to a linear relationship between the endogenous regressor and the instru-

ments.1 While methods such as Newey (1990) have been developed for asymptotically efficient

instrumental variables estimation for nonlinear models, these non-parametric techniques can

become computationally prohibitive when dealing with a large number of instruments. In this

paper, we introduce a novel method that filters relevant information from numerous instruments

(possibly more than the sample size) to achieve efficient estimation, accommodating both linear

and nonlinear relationships between the endogenous regressor and instruments. Moreover, our

approach permits the presence of weak and invalid instruments, provided that some linear com-

bination(s) of their common components can serve as valid instrument(s), a weaker condition

than Bai & Ng (2010).

A natural question is: Do we encounter many instruments in economics? The answer is yes,

all the time. If z is a valid instrument, why not also consider its functional transformations,

such as z2, log z,
√
z, among others? In the case of an AR(p) process, the (p+1)th lag can serve

as an instrument, so if zt−k is an instrument, why not consider its lags, polynomial expansions,

and interaction terms as well? Even without transformations, many linear instruments are not

uncommon, as in industrial organization applications in Berry et al. (1995). Olmstead et al.

(2007) is a similar work estimating price elasticities of water demand. Given that a wide array

of instruments arises naturally, should we not make use of them? The answer depends on how

we model the first stage. By restricting the first stage to a linear form, we impose a specific

functional structure, which may lead to model misspecification, thereby invalidating the infer-

1Belloni et al. (2012) incorporates non-linearities through a sieve or polynomial transformations but then
instruments have to be low dimensional. Essentially their method is LASSO based which is linear. Carrasco
(2012)’s regularized 2SLS can potentially address both non-linearities and high-dimensionality of instruments,
but it requires all instruments to be valid and not weak which is stronger condition than Bai & Ng (2010).

2



ences as discussed in Newey (1985). Misspecification is a major issue in economics discussed in

seminal works such as Lucas Jr (1976). Hence, sufficiently leveraging the information from a

large set of instruments is crucial for achieving efficient estimation of the structural parameters

of interest.

Efficiently utilizing information from many instruments presents several key challenges. First,

the relationship between endogenous regressors and instruments may be nonlinear and unknown,

complicating model specification. Second, with many instruments, correlations among them

can lead to the failure of the irrepresentable condition (as noted by Fan et al. (2020)), resulting

in sparsity-based LASSO-IV methods like Belloni et al. (2012) potentially selecting incorrect

instruments. Non-parametric IV methods, such as Newey (1990), can address the first challenge.

For the second, Bai & Ng (2010) and Kapetanios & Marcellino (2010) suggest using common

components or factors as instruments. However, neither approach alone suffices in a more

general setting when both the nonlinearity and instrument correlation are present.

A possible solution is to extract factors and use them to estimate the “first-stage” as a non-

parametric function, a strategy that, to our knowledge, has yet to be explored. However, this

introduces a third challenge: not all factors are necessarily relevant to the endogenous regres-

sor. Inclusion of irrelevant factors can reduce efficiency, as observed in the forecasting literature

(e.g., Bai & Ng (2008), Kelly & Pruitt (2015), Fan et al. (2017)), and also increases the dimen-

sionality of the non-parametric function, thereby slowing convergence (Pagan & Ullah (1999)).

The fourth challenge arises even if all factors are relevant—when their number is sizeable, as in

Fama & French (1993) and Fama & French (2015), non-parametric estimation becomes slower

due to convergence issues. Our proposed method seeks to address aforementioned challenges in

a comprehensive and unified framework.

When we face many instruments, presence of correlation among them is likely to be more

plausible than sparsity especially so in macro-finance contexts. In areas like industrial organi-

zations, particularly when considering different functional forms of instruments or when lagged

versions of a variable also serve as instruments, the possibility of instruments being correlated

with each other is non-trivial. Because they stem from the same sources of information, there-

fore exhibiting a factor structure, we discuss one such case in section-5.1. This factor structure

introduces challenges for sparsity-based selection methods like LASSO, as the violation of the
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irrepresentable condition can lead to incorrect instrument selection (Fan et al. (2020)). In a sim-

ulation setting with correlated instruments, we show that Belloni et al. (2012)’s sparsity-based

approach cannot beat simple OLS, highlighting its limitations in settings where instruments are

correlated (see Table-33 in Appendix-B.4 for detailed results).

In economics and finance, when a large number of variables are correlated, factor models are

commonly employed to capture the underlying structure (Chamberlain & Rothschild (1983)).

For the case of correlated instruments, Bai & Ng (2010) developed a method to identify causal

parameters of interest, under the assumption that a large number of instruments can be ex-

plained by a few unobservable factors. They demonstrated that these factors could serve as

effective instruments. While their approach addresses the high dimensionality of the instru-

ment set, it is limited to linear models and is unsupervised therefore may select factors that are

irrelevant to the endogenous regressor introducing a source of inefficiency in the estimation.

This paper proposes a novel method that extends the applicability of factor-based approaches

by accommodating both linear and non-linear relationships between endogenous regressors and

instruments, even in high-dimensional settings. The non-linear aspect of our method mitigates

the issue of functional form misspecification, while its capability to manage high-dimensional

data allows for the optimal utilization of a large set of correlated instruments. Furthermore, our

approach is supervised, therefore, it avoids the inclusion of irrelevant factors, thereby enhancing

the efficiency of the estimation procedure. On top of these features, our estimator sufficiently

reduces the dimensionality to further gain efficiency in the estimation procdure.

Our approach can be conceptualized as a five-layer deep learning architecture designed for

tractability. In the first layer, we take N instruments as inputs, allowing N to exceed the sample

size. The instruments can be noisy, weak, or even invalid, provided the underlying common

components are identifiable. In the second layer, principal component analysis is employed to

extract r common factors from the instruments. The third layer employs sufficient dimension

reduction to estimate the Central Mean Subspace (CMS) of the factors for the endogenous

regressor, using the methodology introduced by Li (1991). This step further reduces the dimen-

sionality of the factors. To elaborate, let x represent the endogenous regressor and f the vector

of factors. Suppose x ∈ R and f ∈ Rr with joint cumulative distribution function F (x, f). The

conditional mean regression E(x | f) is the first moment of the conditional distribution of x
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given f , but the broader goal is to understand how F (x | f) behaves as f varies. To simplify

this, f can be replaced by L ≤ r linear combinations of its components, θ′1f , . . . ,θ
′
Lf , without

losing information about F (x | f). Thus, we have:

x ⊥ f | θ′f ,

where θ is an r × L matrix. This formulation implies that the conditional distribution of x | f

depends on f only through θ′f , effectively reducing the dimensionality of the regression problem.

These combinations of factors (θ′1f , . . . ,θ
′
Lf) are called sufficient dimension reduction (SDR)

indices and they serve as true instruments in our procedure, meeting the necessary relevance

and exclusion restrictions. If L < r, this significantly simplifies the regression. For example,

when r = 5 and the relationship between x and f is linear, L = 1 is sufficient to explain x,

allowing a non-parametric model to be estimated efficiently. Even in non-linear cases, using L

(with 1 < L ≤ r) linear combinations of factors is more efficient than directly working with r

factors. This supervised procedure is also advantageous even for linear models, as it filters the

variations in the instruments relevant to x. For instance, with 100 instruments generated from

five factors, but only three factors affecting x, our method identifies the three relevant factors,

while methods like Bai & Ng (2010) would use all five, reducing efficiency. This advantage is

highlighted in Fan et al. (2017) in the forecasting problem. Unlike unsupervised methods such

as Bai & Ng (2010), which focus on the within-variance of the instrument set, our method

leverages the covariance of the inverse regression function, E(zt | xt), ensuring that only factors

relevant to x are considered.

The fourth layer then estimates x as a non-parametric function of the L number of SDR

indices identified in the third layer, yielding x̂, equivalent to the first stage in 2SLS. In the final

layer, we perform OLS regression using the exogenous variation x̂, derived from the factors, in

place of the endogenous regressor x, to estimate the causal parameter of interest.

To evaluate the performance of our method, we design several simulation experiments and

compare our method against competitors. In the main simulation results, we report outcomes

for three major designs, each dedicated to demonstrating performance gains due to three key

properties: dimension reduction, supervision, and the ability to handle non-linearities. We keep

both factors and errors serially correlated to better reflect real-world data. We show that the
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method outperforms competitors in the majority of cases where endogeneity is present. We also

consider two empirical applications: one in industrial organization and the other in finance.

The method yields meaningful insights, proving the applicability of our concepts to real-world

problems.

For an observation, we use t subscript to indicate that our paper allows time series data. The

method can equally be applied to the cross-section data. Further, we do not explicitly consider

exogenous control variables. But if controls are necessary, one can always first get residuals of

response and endogenous regressors by regressing control variables, then use the respective resid-

uals in our method, we demonstrate it through our empirical application in section-5.1. Vectors

and matrices are represented by small and capital boldfaced letters respectively. Scalers are not

boldfaced.

The remainder of the paper is organized as follows: Section 2 outlines the proposed procedure.

Section 3 discusses the associated asymptotic theory. In Section 4, we evaluate the performance

of the method through simulations. As a proof of concept, Section 5 applies our approach to

real-world problems. Finally, Section 6 concludes the paper.

2 The Sufficient Instruments Filter

In this section, we introduce the structural framework, an overview of sufficient dimension

reduction (SDR), and its relevance to the problem at hand. The identification assumptions are

then outlined, followed by a detailed explanation of the estimation process across the various

layers of the procedure. The section concludes with an algorithm summarizing the estimation

process, alongside a discussion of the tuning parameters and their implications for the overall

methodology.

2.1 Structural Framework

For t = 1, 2, . . . , T the dependent variable yt and independent variable of interest xt are en-

dogenously related through a linear equation of the form 2.1. The endogeneity comes from

the fact that E(xtεt) ̸= 0, which makes OLS estimates biased. ft is a r × 1 vector of fun-

damental variables which we call factors. θ1, . . . ,θL are r dimensional orthonormal vectors
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called sufficient dimension reduction (SDR) directions (L ≤ r). Sufficient dimensions reduction

(SDR) directions span the central subspace (Sx|ft) required for conditional mean estimation of

xt (Cook (2009)) i.e. factors relate with xt only through these SDR directions. Product of

SDR directions with factors (θ′1ft, . . . ,θ
′
Lft) are called SDR indices (more on this later) which

are our instruments for xt and which are allowed to be non-linearly related with xt through

the equation-2.2. However, the problem is that we neither observe the true instruments (SDR

indices) nor factors, instead, we observe a large number of noisy versions of them, {zit}, where

i = 1, 2, . . . , N . For the clarity of the presentation, we refer to “noisy instruments” {zit} as

instruments, ft as factors, and to true instruments (θ′1ft, . . . ,θ
′
Lft) as SDR indices for the rest

of the paper to avoid any confusion. The number of such noisy instruments is N which can be

large potentially more than the sample size.

yt = β0 + β1xt + εt (2.1)

xt = m
(
θ′1ft, . . . ,θ

′
Lft
)
+ et (2.2)

zit = b′
ift + uit, 1 ≤ i ≤ N, 1 ≤ t ≤ T (2.3)

fjt = γjfjt−1 + vjt, 1 ≤ j ≤ r (2.4)

For a jth factor, fjt is the value at time t which is not observable. For ith instrument, zit is

the observed value at time t, we define zt = (z1t, . . . , zNt), and T × N matrix of instruments

Z = (z1, z2, . . . , zT )
′. bi is an r × 1 vector of factor loadings for the instrument i, which in

matrix form can be written as B = (b1, . . . ,bN )′. uit is the error term or idiosyncratic noise

in instrument i at time t, it can be represented in vector form as ut = (u1t, . . . , uNt)
′ and in

matrix form U = (u1,u2, . . . ,uT )
′. F = (f1, . . . , fT )

′ is a T ×r matrix of factors. We can rewrite

equation-2.3 in matrix form as:

Z = FB′ +U

Our parameter of interest is β = (β0 β1)
′. In particular, we care about β1, the causal effect of

xt on yt. In equation (2.2), m(·) is an unknown non-parametric function, and et is a stochas-

tic error term that is independent of ft and uit. One can see this model as a deep learning

framework (Bengio et al. (2009)) which involves five layers of linear/nonlinear processes for di-

mension reduction and estimation with the added advantage of offering a scalable and explicit

computational algorithm. Figure-1 presents the architecture of this procedure.
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Figure 1: Architecture of the Sufficient Instrument Filter (SIF) estimation procedure

2.1.1 Sufficient Dimension Reduction

The model (2.2) says that the endogenous regressor xt depends on the factors ft only through

L-many indices θ′1ft, . . . ,θ
′
Lft, where L ≤ r. For example, if factors are linearly related with

xt, then L = 1 because a linear combination of factors can capture the underlying relationship.

The main goal of the sufficient dimension reduction (SDR) procedure is to extract the directions

of factors such that the directions are sufficient to find the best fit for xt. In other words, when

we pin down the span of the central subspace, there is nothing left in factors that can explain

xt, that is why this process is called sufficient dimension reduction.

While the individual directions θ1, . . . ,θL are not identifiable without imposing structural

conditions on m(·), however, we just need the subspace Sx|ft spanned by θ1, . . . ,θL, which can

be identified. Therefore, throughout this paper, we refer to any orthonormal basis θ1, . . . ,θL of

the central subspace Sx|ft as sufficient dimension reduction directions, and their corresponding

indices θ′1ft, . . . ,θ
′
Lft as sufficient indices.
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This exercise effectively reduces the dimension of instruments from the diverging N to a

fixed L to estimate the non-parametric function m(·), and thus greatly alleviates the curse of

dimensionality making it possible for us to estimate the non-parametric function m(·). Further,

we need L > 1 only if there is a non-linear relationship between xt and factors ft.

2.1.2 What is So Special in SDRs?

To uncover the causal effect of xt on yt, we should ideally be using a variable that can best

explain xt but is not endogenously related to yt. We already discussed that the 2SLS method

becomes inconsistent when the number of instruments is high, therefore, we need to use a

high-dimensional method to obtain x̂t. In particular, we can use linear unsupervised PCA-

based methods by Stock & Watson (2002), linear supervised methods Bai & Ng (2008), and

Kelly & Pruitt (2015). These methods are based on Principal Component Regression (PCR)

which is limited to using the linear form of the factors2. What if the variable xt is made up of

non-linear combinations of the factors? One straightforward solution is to use non-parametric

regression to obtain x̂t, however, it gets cursed by dimensionality if the true number of factors

r increases. SDRs fuse the factors into L ≤ r indices which uncovers the central subspace Sx|ft .

The merit of the SDR-based method comes from three major advantages: first, it fuses factors

into a smaller number of directions hence making it possible for us to estimate a non-parametric

function m(·) with a relatively much faster convergence rate. Second, it is a supervised method

unlike PCA-based factor estimations of Bai & Ng (2010) therefore, it picks the directions in

the instrument set Z which are relevant for the xt more accurately. Third, it can capture the

non-linear relationships between the xt and ft through multiple SDR indices.

2.2 Identification

Instrument variable-based estimation requires an instrument to be a valid source of variation for

the endogenous regressors. We call an instrument valid if it satisfies two conditions: relevancy

and exclusion restriction. The relevancy means that our instruments are sufficiently related to

the endogenous regressor. The exclusion restriction requires the instrument to affect the target

only through the endogenous regressor. In this section, we pin down the conditions required for

our procedure.

2Jat & Padha (2024) is a recent non-linear and supervised forecasting method.
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2.2.1 Relevancy Condition

Since the true factors are sufficient indices, the required relevancy condition is:

E
[
m(θ1

′ft, . . . ,θL
′ft)xt

]
̸= 0 (2.5)

This means that if any functional form of sufficient indices can explain the endogenous regressor

xt, the relevancy condition of our instruments will be satisfied. This is a much weaker condition

than the previously required ones in the literature in two ways. The first is that unlike Bai

& Ng (2010), we do not need all factors to be a valid instrument, as long as some linear

combination(s) of them is(are) valid instrument(s), our method works. The second is that our

relevancy condition does not require the linear form of the indices/factors to be related to the

endogenous regressor, as long as they are related in any functional space, our relevancy condition

is satisfied. The required condition of Bai & Ng (2010), E(fjtxt) ̸= 0 for all j = 1, 2, . . . , r, is

not necessary for but is sufficient for our method. For example, if we take θ1 as a vector of

ones, θ2 to θL as a vector of zeros, and the function m(·) as a linear function, this gives us

E
[
m(θ1

′ft, . . . ,θL
′ft)xt

]
= E

[
θ1

′ftxt

]
= E

[
ftxt

]
.

2.2.2 Exclusion Restriction

The exclusion restriction means that the true instruments (θ1
′ft, . . . ,θL

′ft) should be able to

affect the target yt only through the endogenous regressor xt. Translating it into an equation,

the exclusion restriction we need is:

E
[
m(θ1

′ft, . . . ,θL
′ft)εt

]
= 0

In other words, the fundamental source of variation i.e. the factors should be independent of

the error term in the equation-2.1.

2.3 The Estimator

There are four steps involved in our estimation procedure. The first is to estimate factors ft

from the large pool of available instruments {zit}, i = 1, 2, ..., N . There is a large literature

on the estimation of factors using principal components such as Stock & Watson (2002) and

Bai (2003). We follow the existing literature to consistently estimate factors using principal
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component analysis.

The second step is to estimate the SDR indices: θ̂1f̂t, . . . , θ̂Lf̂t. We follow Fan et al. (2017) for

estimating SDR directions using sliced inverse regression (SIR) which was originally developed

by Li (1991). Most of our theory in SDR direction estimation is borrowed from Fan et al. (2017)

and Li (1991). There exist other methods of SDR direction estimations such as parametric in-

verse regression (PIR) developed by Bura & Cook (2001). In this paper, we use SIR but for the

sanity check, we verify the performance by replacing SIR with PIR.

The third step in our procedure is to estimate the non-parametric function m(·) using SDR

indices as arguments and xt as the target variable (Eq-2.2). We use the local linear least

square approach to estimate the non-parametric function m(·). The asymptotic properties of

this method are extensively discussed in Masry (1996) and Fan (2018), we broadly use their

results with some minor modifications to fit in our setting. As a result of the third step, we

obtain x̂t = m̂(θ̂1f̂t, . . . , θ̂Lf̂t). This estimate is exogenous because it uses the fundamentally

independent variation coming out of factors. This can be seen as the first stage of the two-stage

least square (2SLS) estimator of instrument variable regression. The merit of our method comes

from the fact that we use a procedure that can give us an exogenous x̂t which is very close to

the true xt.

The fourth and last step is to obtain the β̂ by using x̂t in place of xt in equation 2.1. In this

section, we describe our estimation procedure, the asymptotic theory of β̂ is developed in the

section-3.

2.3.1 Estimation of Factors

Estimation of factors using principal components is an established literature. We temporar-

ily assume that the number of underlying factors r is known to us. Consider the following

constrained least squares problem:
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(
B̂r, F̂r

)
= arg min

(B,F)

∥∥Z−BF′∥∥2
F

(2.5)

subject to T−1F′F = Ir, B′B is diagonal (2.6)

Where Z = (z1, . . . , zT ) ,F
′ = (f1, . . . , fT ), and ∥ · ∥F denotes the Frobenius norm. This is

a classical principal components problem, and it has been widely used to extract underlying

common factors (Stock & Watson (2002), Bai & Ng (2002); Bai & Ng (2013)). The constraints

in 2.6 correspond to the normalization. The minimizers F̂r and B̂r are such that the columns

of F̂r/
√
T are the eigenvectors corresponding to the r largest eigenvalues of the T × T matrix

Z′Z, and B̂r = T−1XF̂r. To simplify notation, we use B̂ = B̂r, F̂ = F̂r, and
{
f̂1, . . . , f̂T

}
throughout this paper. To choose r, we use Ahn & Horenstein (2013)’s method.

2.3.2 Estimation of SDR Directions

Our SDR direction estimation procedure fully leverages the information from the instrument,

through the covariance matrix of the inverse regression function, E (zt | xt). This is a key

difference from Bai & Ng (2010), which uses unsupervised and linear counterpart Cov(zt, xt).

By conditioning on the target xt in the model-2.3, we derive

cov (E (zt | xt)) = B cov (E (ft | xt))B′

Where we used the assumption that E (ut | xt) = 0. Assuming that E
(
b′ft | θ′1ft, . . . ,θ′Lft

)
is

a linear function of θ′1ft, . . . ,θ
′
Lft for any b ∈ Rr, Li (1991) showed that E (ft | xt) is contained

in the central subspace Sx|ft spanned by θ1, . . . ,θL. This important result implies that Sx|ft

contains the linear span of cov (E (ft | xt)). Therefore, we can get the SDR direction by inves-

tigating the top L eigenvectors of cov (E (ft | xt)). To see this, let Θ = (θ1, . . . ,θL). Then, for

a L× 1 coefficient function a(xt), we can write

E (ft | xt) = Θa (xt)

Therefore,

cov (E (ft | xt)) = ΘE
[
a (xt)a (xt)

T
]
Θ′
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The quadratic form matrix cov (E (ft | xt)) will have L eigenvalues bounded away from if

E
[
a (xt)a (xt)

T
]
is non-degenerate.

To obtain cov(E (ft | xt)), we use sliced inverse regression methodology proposed by Li (1991).

The estimator is given by:

Σf |x =
1

M

M∑
s=1

E (ft | xt ∈ Is)E
(
f ′t | xt ∈ Is

)
We slice or divide the range of xt intoM number of intervals: I1, . . . , IM such that P (xt ∈ Is) =

1/M . Substituting E (ft | xt) = Θa (xt), we get:

Σf |x = Θ

[
1

M

M∑
s=1

E (a (xt) | xt ∈ Is)E (a (xt) | xt ∈ Is)
T

]
Θ′ (2.6)

If the matrix within the brackets in equation-2.6 is non-degenerate andM is at least max{L, 2},

we are guaranteed to have L eigenvalues bounded away from zero. Therefore, the linear span

generated by the eigenvectors corresponding to the L largest eigenvalues of Σf |x matches that

generated by θ1, . . . ,θL. To estimate Σf |x when factors are unobserved, we consistently derive

the factors ft from the factor model in equation 2.3, then utilize the estimated factors f̂c along

with the observed target xt to approximate the sliced estimate Σf |x.

In Section-3, we shall show that under mild conditions, Σf |x is consistently estimated by Σ̂
f̂ |x as

N,T → ∞. Furthermore, the eigenvectors of Σ̂
f̂ |x corresponding to the L largest eigenvalues,

denoted as θ̂j(j ≡ 1, . . . , L), will converge to the corresponding eigenvectors of Σf |x, which

actually span the aforementioned central subspace Sx|ft . This will yield consistent estimates of

sufficient indices θ̂
′
1f̂t, . . . , θ̂

′
tf̂t, the true instruments.

To accurately estimate Σf |x, we will substitute the conditional expectations E (ft | xt ∈ Is)

with their sample equivalents. Let us denote the ordered statistics of
{(
xt, f̂t

)}
t=1,...,T−1

by{(
x(t), f̂(t)

)}
t=1,...,T

based on the values of x, arranged such that x(2) ≤ · · · ≤ x(T ). We parti-

tion the range of x into M slices, with M typically being a fixed number. The first M − 1 slices

contain an equal number of observations, denoted as c > 0, while the last slice may contain fewer

than c observations, which has minimal asymptotic impact. For clarity, we introduce a double

13



subscript notation (s,j), where s = 1, . . . ,M indicates the slice number and j = 1, . . . , c denotes

the index of an observation within a specific slice. Therefore, we can express
{(
xt, f̂t

)}
t=1,...,T

as follows:

{(
x(s,j), f̂(s,j)

)
: x(s,j) = x(c(s−1)+j+1), f̂(s,j) = f̂(c(s−1)+j)

}
s=1,...,M ;j=1,...,c

.

Using the estimated factors f̂ , we can represent the estimate Σ̂f |x in the following form:

Σ̂f |x =
1

M

M∑
s=1

1
c

c∑
j=1

f̂(s,j)

1
c

c∑
j=1

f̂(s,j)

′

. (2.7)

2.3.3 Estimation of Non-parametric Function m(·)

Given the estimated low-dimensional SDR indices in the previous section, we can employ one

of the well-developed nonparametric regression techniques to estimate m(·) to obtain x̂t. For

simplicity, we use the local linear least square regression (Fan & Gijbels (1992)) to estimate

m(·). We postpone the discussion on this step to the section-3.2.3 where we also discuss its

asymptotic properties.

2.3.4 Estimation of Main Parameter

So far we have discussed how to estimate the x̂t, the exogenous variation counterpart of xt,

popularly known as the “first-stage” in the 2SLS method. Now replace xt by x̂t in equation-2.1

to estimate the parameter of interest β = (β0 β1)
′ using least squares. This is like the second

stage in the two-staged least squares (2SLS) estimation procedure. We summarize the proposed

estimation procedure in Algorithm-1.
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Algorithm 1 Sufficient Instrument Filter (SIF) Procedure

Step 1 Obtain the estimated factors
{
f̂t

}
t=1,...,T

from 2.5 and 2.6.

Step 2 Construct Σ̂f |x described in the equation-2.7.

Step 3 Obtain θ̂1, · · · , θ̂L from the L largest eigenvectors of Σ̂f |x.

Step 4 Construct the predictive indices θ̂
′
1f̂t, · · · , θ̂

′
Lf̂t.

Step 5 Use the local linear least squared regression (Fan & Gijbels (1992)) to

estimate m(·) with indices from Step 4, and hence to get x̂t.

Step 6 Use the x̂t obtained in step-5 in place of xt in equation-2.1 and do OLS

to get β̂ = (β̂0 β̂1)
′

2.3.5 Tuning Parameters

We need to tune three hyperparameters in our procedure, the number of factors r, the number

of indices L, and the number of slicesM to be considered for sliced inverse regression. The num-

ber of factors is estimated by the eigenvalue ratio test proposed by Ahn & Horenstein (2013).

There are several tests available to choose the number of sufficient directions L; these tests are

discussed in Li (2018). Fan et al. (2017) observed that the number of slices M does not seem

to matter much as long as it is greater than max{L, 2}; therefore, we set M = 10, the number

used in Fan et al. (2017). We also verify that the performance of the method does not crucially

depend on the choice of M in simulation exercises by putting M = {8, 15}.

Due to the presence of two tuning parameters in the sliced inverse regression (SIR) method

of SDR direction estimation, a section of the literature raises questions about its robustness.

We therefore cross-check its performance by replacing SIR with another SDR method called

Parametric Inverse Regression (PIR), developed by Bura & Cook (2001), in our procedure. In

simulation exercises (see Appendix-B.3), we verify that SIR’s performance is similar to PIR.

Therefore, the tuning parameters of SIR are not crucially affecting the method’s performance.

3 Asymptotic Theory

In this section, we present the asymptotic results for the estimation steps and derive the asymp-

totic distribution of the estimator of interest, β̂. We establish the convergence rates associated
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with each estimation step. Let’s introduce the necessary notation for clarity, for a vector b, let

∥b∥ denote its Euclidean norm. For a matrix B, ∥B∥ and ∥B∥1 represent the spectral norm and

the ℓ1 norm, respectively. The spectral norm is defined as the largest singular value of B, while

the ℓ1 norm is the maximum absolute column sum. Additionally, the matrix ℓ∞ norm, denoted

∥B∥∞, is the maximum absolute row sum. For symmetric matrices, the ℓ1 norm is equivalent

to the ℓ∞ norm. We also define the smallest and largest eigenvalues of a matrix as λmin(·) and

λmax(·), respectively.

3.1 Assumptions

In this section, we introduce four sets of assumptions. The first set covers the assumptions

required for the identification of our causal parameter of interest β. Assumptions-2 is for the

identification of factors, loadings, and SDR directions. Assumption-3 and 4 put structure on

the data generating processes and error structures. Assumption-5 talks about the conditions

required for consistently estimating a non-parametric relationship between the endogenous re-

gressor and sufficient indices, the true instruments.

Assumption 1. (Identification Assumptions)

1. E
[
m(θ1

′ft, . . . ,θL
′ft)xt

]
̸= 0

2. E
[
m(θ1

′ft, . . . ,θL
′ft)εt

]
= 0

3. E
[
m(θ1

′ft, . . . ,θL
′ft)et

]
= 0

4. For all i and all t, E(uitet) = 0 and E(uitεt) = 0

5. E[εt] = 0, and
√
T
(

1
T

∑T
t=1 εt − E(εt)

)
= Op(1) for all t.

6. E[et] = 0, and
√
T
(

1
T

∑T
t=1 et − E(et)

)
= Op(1) for all t.

The first and second assumptions of Assumption-1 are relevancy and exclusion restrictions re-

spectively, required for the validity of the instrument. Relative to the nearest literature (Bai &

Ng (2010)), our relevancy condition is weaker. The exclusion restriction is a sufficient condition

for all functional forms of m(·), which may turn out to be a stronger one if the true underlying

model is linear. However, when the true model is non-linear, unlike ours the exclusion condition

of Bai & Ng (2010) is no longer sufficient.
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The Assumption-1.3 is required by the construction of the non-parametric model. The Assumption-

1.4 says that the relationship between the instruments and the endogenous regressor is through

the factors and not through error ut. The Assumption-1.5 and 1.6 ensure that the partial sum

of errors grows at a rate proportional to
√
T . This assumption satisfies as long as the serial

correlation decays sufficiently fast, the assumptions trivially hold if errors εt and et are i.i.d.

E(etεt) are allowed to be non-zero hence introducing the xt and yt endogenity in the model.

All error terms are allowed to be serially correlated. The uit are allowed to be both serially and

cross-sectionally correlated, more structure on the errors is in the Assumption-3 and 4.

We borrow our Assumption-2 from Fan et al. (2017), to make it easy to follow, we tried to

keep the language the as theirs.

Assumption 2. (Factors, Loadings, SDR’s Basic Assumption)

1. Pervasive Condition: The loadings bi satisfy ∥bi∥ ≤ M for i = 1, . . . , N . As N → ∞,

there exist two positive constants c1 and c2 such that:

c1 < λmin

(
1

N
B′B

)
< λmax

(
1

N
B′B

)
< c2

2. Identification: T−1F′F = IK , and B′B is a diagonal matrix with distinct entries.

3. Linearity: The expectation E
(
b′ft | ϕ′

1ft, . . . ,ϕ
′
Lft
)
is a linear function of ϕ′

1ft, . . ., ϕ
′
Lft

for any b ∈ RN , where the vectors ϕ′
i are derived from model 2.2.

Assumption 2.1 is commonly referred to as the pervasive condition, which ensures that the

factors influence a substantial portion of the noisy instruments (Bai & Ng (2002)). Assumption

2.2 relates to the PC1 condition in Bai & Ng (2013), which removes rotational indeterminacy

in the individual columns of F and B. Assumption 2.3, known as the linearity condition, is

standard in dimension reduction literature. It holds when the distribution of ft is elliptically

symmetric and is asymptotically justified when the dimension of ft is large, see Fan et al. (2017)

for references. Assumption 2.3 guarantees that the (centered) inverse regression curve E (ft | xt)

lies within the central subspace. Specifically, following Li (1991), Fan et al. (2017) states the

following lemma:
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Lemma 1. Under model 2.2 and Assumption 2.3, the centered inverse regression curve E (ft | xt)−

E (ft) is contained within the linear subspace spanned by ϕ′
k cov (ft), where k = 1, . . . , L.

Lemma-1 forms the basis for sliced inverse regression. With this lemma, estimating the SDR

directions without the knowledge of functional form m(·) is possible. For proof, one can see Fan

et al. (2017).

We assume the data generation process is strongly mixing to ensure that the influence of past

information gradually diminishes. Let F0
∞ and F∞

T represent the σ-algebras generated by

{(ft,ut, et) : t ≤ 0} and {(ft,ut, et) : t ≥ T} respectively. Define the mixing coefficient as:

α(T ) = sup
A∈F0

∞,B∈F∞
T

|P (A)P (B)− P (AB)|

Assumption 3. (Data Generating Process) {ft}t≥1, {ut}t≥1, and {et}t≥1 are strictly stationary

processes, mean-zero, and mutually independent. Additionally, E ∥ft∥4 <∞ and E
(
∥ft∥2 | xt

)
<

∞. For some positice constant c, the mixing coefficient α(T ) < cρT for all T ∈ Z+ and some

ρ ∈ (0, 1). Note that the {ft}t≥1, {ut}t≥1, and {et}t≥1 are allowed to be serially correlated.

The Assumption-3 is the same as Assumtion-3.2 of Fan et al. (2017) and aligns with Assumption

A(d) in Bai & Ng (2013). Independence between {ut}t≥1 and {et}t≥1 can be relaxed to reflect a

more realistic data generation process. For example, assuming E (ut | xt) = 0 for t ≥ 1 suffices

for the theory to hold. However, we retain this simplified assumption for clarity.

To consistently estimate factor and factor loading, we impose the following conditions on the

residuals and dependencies in the factor model-2.3, similar to those in Bai (2003).

Assumption 4. (Residuals and Dependence) There exists a positive constant M < ∞, inde-

pendent of N and T , such that:

1. E (ut) = 0, and E |uit|8 ≤ M.

2. ∥Σu∥1 ≤ M, and for every i, j, t, s > 0, (NT )−1
∑

i,j,t,s |E (uitujs)| ≤ M

3. For every (t, s), E
∣∣N−1/2 (u′

sut − E (usut))
∣∣4 ≤ M.

The Assumption-4 allows idiosyncratic errors and factors to be serially correlated but not too

strongly. These assumptions on errors and their dependence are standard in the factor estima-

tion literature, one can refer to Bai & Ng (2010) or Fan et al. (2017) for further detail.
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3.2 Results

We prove the consistencies of the intermediate steps involved in our procedure. Since we do

inferences on the parameter β = (β0 β1), we characterize its asymptotic distribution.

3.2.1 Consistency of Factor Estimation

Define ωN,T = N−1/2 + T−1/2.

Lemma 2. under Assumptions 2.1,2.2, 3 and 4, we have the following

1

T

T∑
t=1

||̂ft −Hft||2 = Op(ω
2
N,T )

Proof. This result is proved in Theorem 1 of Bai & Ng (2002).

This lemma establishes the estimated factor(s) convergence to the true factors up to a rotation.

It is well known in the literature on factor models3, that true underlying factor(s) are not

identifiable; we instead estimate a rotated version of the true factors, which preserves their

span. One important point to emphasize is that we use the indices of these factors. Therefore,

the indices will automatically rotate back the factors to span the central mean subspace of the

xt.

Remark 1. Under the Assumption-2.1,2.2, Assumption-3, and Assumption-4, the rotation

matrix H asymptotically converges to identity matrix of order r. Therefore, we can obtain the

actual factors, not just the rotation. For more details, please refer to Lemma-A.3 of Fan et al.

(2017).

3.2.2 Consistency of SDR Directions Estimation

The subsequent result details the rate at which the sliced covariance estimate of the inverse

regression curve (i.e., Σ̂f |x as defined in 2.7) converges under the spectral norm. It also suggests

a similar convergence rate for the estimated SDR directions corresponding to sufficient indices.

For simplicity, the number of factors r and the number of slices M are assumed to be constant,

this assumption facilitates a faster convergence rate but is not crucial.

3This feature of inherent unidentifiability has been emphasized in Bai (2003) among other papers. The
normalization imposed in assumption 2.2 is done to handle this issue.
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Lemma 3. Assuming Assumptions 2.1-2.3 are satisfied and letting ωN,T = N−1/2+T−1/2, then

under the model-2.2 and its corresponding factor model 2.3, it holds that

∥∥∥Σ̂f |x − Σf |x

∥∥∥ = Op (ωN,T )

If the L largest eigenvalues of Σf |x are positive and distinct, the eigenvectors θ̂1, . . . , θ̂L corre-

sponding to these L largest eigenvalues of Σ̂f |x provide a consistent estimate of the directions

θ1, . . . ,θL, with rates ∥∥∥θ̂j − θj∥∥∥ = Op (ωN,T )

for j = 1, . . . , L, where θ1, . . . ,θL form an orthonormal basis for the central subspace Sx|f .

Proof. This result is proved in Theorem 3.1 of Fan et al. (2017). One need to replace their xit

with our zit and their yt+1 with our xt.

Corollary 1 Under the same conditions of Lemma-3, for any j = 1, 2, . . . L, we have

θ̂
′
j f̂t

p−→ θ′jft

This corollary states that the sufficient indices can be consistently estimated as a consequence

of the Lemma-3. For the proof, one can refer to Fan et al. (2017).

3.2.3 Consistency of Non-parametric Function Estimation

For notational simplicity, let’s denote SDR indices θkft by wk, where k = 1, 2, . . . , L. For a given

L dimensional point w = {w1, w2, . . . , wL} and a vector of bandwidths h = {h1, h2, . . . , hL},

ψt =

(
wt−w
h

)
=

(
wt1−w1

h1
, · · · , wtL−wL

hL

)
=

(
ψt1, . . . ψtL

)
is local deviation from it. We define

the L−dimesnional kernel function to be the product of kernels with individual arguments. It

weights an observation inversely based on its distance from our point w:

K(ψ) = K(ψ1)× · · · × K(ψL)

While different bandwidth for different variables makes sense, in our setting variables are scaled,

therefore for simplicity, we use the same bandwidth for all SDR indices i.e. h1 = h2 = . . . =

hL = h. the joint density g(x,w1, . . . , wL) of our xt and SDR indices can be given by the
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following expression:

g(x,w1, . . . , wL) =
1

ThL+1

T∑
t=1

K
(xt − x

h

)
K
(wt1 − w

h

)
× · · · × K

(wtL − w

h

)

Similarly, the joint density of the SDR indicies is given by:

g(w) = g(w1, . . . , wL) =
1

ThL

T∑
t=1

K
(wt1 − w

h

)
× · · · × K

(wtL − w

h

)
=

1

ThL

T∑
t=1

K
(
ψt1

)
× · · · × K

(
ψtL

)
=

1

ThL

T∑
t=1

K
(
ψt

)

One can obtain the expression for conditional density of x given SDR indices g(x | w1, . . . , wL)

by dividing the two expressions above. Using the definition of conditional mean which ism(w) =∫
xtg(xt | w)dxt. We use the local linear least square (LLLS) method for estimating m(w).

Masry (1996) and Fan (2018) discuss asymptotic properties of multivariate non-parametric

estimation in time series data. Assumption-5 lists the assumptions required for consistent

estimation of the non-parametric function m(·).

Assumption 5. (Kernel, Smoothness of m(·), Moments, Bandwidth)

1. Smoothness of m(·): m(w) is twice continuously differentiable, and the second deriva-

tives are bounded:

sup
w

∣∣∣∣∂2m(w)

∂wi∂wj

∣∣∣∣ <∞, for all i, j ∈ {1, . . . , L}.

2. Stationarity: The process {(wt, et)} is strictly stationary and ergodic.

3. Mixing Condition: The sequence {(wt, et)} satisfies an α-mixing condition with mixing

coefficients α(k) that decay sufficiently fast, i.e. for some δ > 0:

∞∑
k=1

α(k)δ/(2+δ) <∞
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4. Moment Conditions: The error term et has finite second moment E[e2t ] = σ2 and may

follow an autoregressive process. The covariates wt have bounded moments of order 2+ δ′

for some δ′ > 0:

E[∥wt∥2+δ′ ] <∞.

5. Kernel Function: The kernel function K(·) is a symmetric, bounded, and integrable

function with compact support, satisfying:

∫
K(ψ)dψ = 1,

∫
ψK(ψ)dψ = 0, 0 <

∫
ψψ⊤K(ψ)dψ = κ2 <∞.

6. Bandwidth: The bandwidth h depends on the sample size T and satisfies:

h→ 0, ThL → ∞ as T → ∞.

Specifically, h is chosen such that ThL+4 → 0 as T → ∞.

The Assumption-5.1 means that the non-parametric function m(·) is twice continuously dif-

ferentiable. Bounding the second derivative ensures that there is no abrupt change in the

function. The Assumption-5.2 and 5.3 control the serial dependence of errors. They are ex-

plicitly mentioned but can be inferred from the Assumption-3. For the central limit theorem

to hold in non-parametric estimation, we need (2 + δ)th moment for some δ > 0 to hold,

which is what Assumption-5.4 states. Assumption-5.5 puts structure on kernel function. In

particular, it should integrate to one which is analogous to the sum of weights adding up to

one in a discrete case. Symmetric kernel function ensures that the first moment is zero i.e.∫
ψK(ψ)dψ = 0, this helps us in simplifying the Taylor series expansion to prove the asymp-

totic theory. 0 <
∫
ψψ⊤K(ψ)dψ = κ2 < ∞ ensures that the second moment is bounded

which appears in the asymptotic distribution of the estimator of m(·). The last assumption

Assumption-5.6 ensures that the bandwidth selection should be done in a way that there is

enough sample size available for consistent estimation. We now formally state the asymptotic

results of the non-parametric estimation step.
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Lemma 4. Under the Assumptions 5.1-5.6, the local linear estimator m̂(w) of the non-parametric

function m(w), has the following asymptotic properties:

1. Bias:

E[m̂(w)]−m(w) =
1

2
h2tr (G) + o(h2),

where G = ∇2m(w)·
∫
ψψ⊤K(ψ)dψ, ∇2m(w) is the Hessian matrix of second derivatives

of m(w).

2. Variance:

Var(m̂(w)) =
σ2

ThLg(w)

∫
K2(ψ)dψ + o

(
1

ThL

)
,

where g(w) is the joint density of the covariates wt at point w, and σ2 is the variance of

the error term et.

3. Asymptotic Normality:

√
ThL

(
m̂(w)−m(w)− 1

2
h2tr (G)

)
d−→ N

(
0,

σ2

g(w)

∫
K2(ψ)dψ

)
,

where
d−→ denotes convergence in distribution, tr(·) denotes the trace of a matrix, and the

integrals are taken over the multivariate space of ψ.

Proof. The proof is given in the appendix-A.1.1

The expression m̂(ŵ) − m(w) appears in the expression of β̂ − β which gives us asymptotic

normality. The expression m̂(ŵ)−m(w) has ŵ as an argument instead of w which should add

one more term in the variance but ŵ goes to w at a faster rate relative to non-parametric rate,

therefore that term does not survive in the computation of asymptotic variance.

3.2.4 Main Result: Consistency and Asymptotic Normality of β̂

This section talks about the consistent estimation and the asymptotic normality of our estimator

estimator β, the main parameter of interest for inference.

Theorem 1. (Consistency of β̂) Under the assumptions 1-5, β̂ is a consistent estimator of β.

Formally,

β̂ − β = op(1)
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Proof. We prove this result in appendix-A.1.2

There are in total seven terms that appear when we expand the closed-form expression of β̂.

Out of these seven terms, two terms dominate the other five. These two terms come from

non-parametric estimation which determines the rate of convergence of our estimator β̂. Now

we state the asymptotic normality results:

Theorem 2. (Asymptotic Normality of β̂)

Define Qt = [1 m(wt)] and δNT = min{N
1
2 , T

2
L+4 }. Then, under Assumption-1-5, we have,

δNT

(
β̂ − β − B

)
d−→ N

(
0,

(
1

T
Q′Q

)−1

V

(
1

T
Q′Q

)−1
)
,

where, B =
(
Q′Q
T

)−1

 − 1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

)
β1

1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1

 and

V =

V11 V12

V21 V22

 .
Elements of V are defined in the Appendix-A.1.3.

Proof. The proof of this theorem is given in the Appendix-A.1.3

The elements of matrix V contain β0 and β1 and m(wt) which are not observable. How-

ever, we have their consistent estimators as proved in Theorem-1 and Lemma-4 respectively.

Therefore we can get a consistent estimator of the variance expression stated here. Since

δNT = min{N
1
2 , T

2
L+4 }, therefore we need both N and T to approach ∞ for our asymptotic re-

sults. One may ask why one should use our method when it has both bias and a slower rate, our

answer is that our method is flexible and this is the cost of the same similar to non-parametric

estimators. However, we can kill bias and improve rates by putting more restrictions, which we

leave for future research.

Remark 2. (Asymptotic Bias) The asymptotic bias term B goes to zero but persists with δNT

rate, which is standard in non-parametric estimation. To kill this bias term, ‘undersmoothing’

is employed i.e. choose a bandwidth h smaller than the optimal h∗ ∝ T
−1
L+4 .4 However, under-

4Pagan & Ullah (1999) notes in their Chapter-3, Assumption A10 that (
√
Th)h2 → 0 as T → ∞ is needed

to kill the bias term. At optimal bandwidth i.e. h∗, (
√
Th)h2 ∝

√
(TT

−1
L+4 )

(
T

−2
L+4

)
∝ constant, does not go to

zero as T → ∞. Therefore, a smaller h i.e. undersmoothing is required.
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smoothing means lesser data points availability around a point, therefore may inflate variance.

Therefore, we stick to optimal bandwidth selection with bias term. Simulation evidences shows

that bias decays as sample size grow.

Remark 3. (On the convergence rate of our estimator): We take a conservative approach sim-

ilar to the conservative rates of LASSO. Bühlmann & Van De Geer (2011) discuss in their

theory for the LASSO section that under general conditions, the ℓ2-norm of the LASSO es-

timator converges slower than Op

(√
s log p

n

)
. However, if further restrictions in the form of

“compatibility conditions,” which include “restricted eigenvalue conditions,” are imposed, the

estimator follows a faster rate of Op

(√
s log p

n

)
, where s is the number of nonzero parameters,

p is the number of variables (dimensionality), and n is the sample size. Similar to this, we

suggest that our estimator is slower than the
√
T rate. After imposing additional conditions,

we conjecture that we can improve the rate to
√
T . We leave the task of rate improvement for

future research.

3.2.5 On Semi-parametric Efficiency

There is a large literature on semi-parametric estimation which states that two-step estima-

tors, where the first step is a function rather than a finite-dimensional parameter, can be
√
T -consistent, even though the convergence rate for the first-step functions is slower than

√
T . Newey (1994) and Newey & McFadden (1994) list a set of regularity conditions for

√
T -

consistency of the second-stage estimator when the first-stage estimator could be a slower non-

parametric function.

While it is not difficult to show that two second-order regularity conditions—Linearization

and Stochastic Equicontinuity—required by Newey (1994) hold in our framework, we need to

impose further restrictions on our model to verify the remaining conditions. This is because

Newey (1994)’s results are developed for i.i.d. data and when the arguments of the first-stage

function are known. In our framework, two major challenges arise: we have dependent data,

and our arguments in the non-parametric function are generated regressors instead of regular

variables. Therefore, verifying the remaining conditions is difficult and beyond the scope of this

paper, so we defer this work to future research.
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3.2.6 Bootstrap for Confidence Intervals

Since the expression for the asymptotic variance of our estimator is complicated, we suggest

an alternative method for constructing confidence intervals. Given that our data exhibits serial

correlation, bootstrap methods that preserve the serial dependence structure should be em-

ployed. Carlstein (1986) proposed the Block-bootstrap to handle time-dependent data. The

assumptions stated in our paper for dependent data satisfy the conditions required (stationarity

and α-mixing) for the Block-bootstrap introduced by Carlstein (1986), allowing us to apply the

Block-bootstrap to construct a confidence interval for our estimator.

The key difference between the regular bootstrap and the Block-bootstrap is that, in Block-

bootstrap, we divide the data into several blocks and sample the blocks rather than individual

observations. One key consideration is choosing the block length, i.e., the number of observations

in a block. If the block size is small, we will have more blocks and therefore better asymptotic

properties because we resample blocks, not individual observations. However, the blocks must be

long enough to preserve the dependence structure of the data. The weaker the serial correlation,

the smaller will be the optimal length of the blocks. Carlstein (1986) and Hall et al. (1995)

suggest that the block length should be approximately T 1/3, where T is the sample size.

One can draw B bootstrap samples to obtain B estimates and then use quantiles for con-

structing confidence intervals. In our empirical applications, we demonstrate the use of boot-

strap intervals.

4 Simulation

We evaluate the performance of our method across various data-generating processes (DGPs).

Four designs are considered: the first three highlight the core strengths of our approach—supervised

learning, dimension reduction, and the ability to capture non-linearities. The last design gives

a level playing field to two strands of literature: sparsity-based and factor-based methods.

For each scenario, we present both the expected value and root mean squared error (RMSE)

of our estimator in comparison to alternative methods. The bias can be derived from the

expected value by subtracting the true value, which is set to 2 in all simulations.

We compare our method (SIF) against three competitors: Ordinary Least Squares (OLS),

Two-Stage Least Squares (2SLS), and the Factor Instrumental Variable (FIV) estimator from

Bai & Ng (2010) for the first three designs. The Post-Lasso IV (PLIV) estimator from Belloni
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et al. (2012) is not a suitable competitor in the first three designs because it is designed for

settings with sparse instruments. As shown in Table-33, Belloni et al. (2012)’s method performs

worse than simple OLS across various designs, and therefore, we do not include this method

in comparisons. However, in Design-IV, we report PLIV along with FIV and our method’s

performance.

4.1 Design-I : Demonstrating Supervision Capability

Our main goal in this subsection is to show the supervising ability of our method. Therefore, we

will keep m(·) linear, creating a level playing field for both our method and competing methods.

We will set the true number of factors that drive the instrument set to five, but only three of

them will be relevant for the endogenous regressor xt. As a result, our supervised method should

outperform unsupervised methods such as Bai & Ng (2010) due to its ability to filter out the

factors that are relevant for xt.

4.1.1 The Data Generating Process

The broader structure of this design is an approximate factor model in the sense that endogenous

regressor xt is linearly related to the latent factors ft. This is the setting that Bai & Ng

(2010) considers in their paper except forThe the fact that not all factors are relevant for xt.

Capital Asset Price Model (CAPM) is one such example in the literature (Campbell & Shiller

(1988);Polk et al. (2006)). The data-generating process is:

yt = β0 + β1xt + εt (4.1)

xt = ϕ
′ft + et (4.2)

zit = b′
ift + σzuit, 1 ≤ i ≤ N, 1 ≤ t ≤ T (4.3)

fjt = γjfjt−1 + vjt, 1 ≤ j ≤ r (4.4)

We set β0 = 0 and the main parameter of interest β1 = 2. We let r = 5 and ϕ = (0.8, 0.5, 0.3, 0, 0)′,

which means that five factors drive the instrument set but only three are related to the endoge-

nous regressor xt. A linear combination of factors is useful for the endogenous regressor xt,

meaning that one direction or linear combination is enough to describe xt, therefore L = 1.

Factor loadings bi are drawn from the uniform distribution U [1, 2]. We didn’t choose zero load-

ing to ensure the factors drive the instruments. We allow factors ft and errors (εt, et) to be
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serially correlated following AR(1) process. The errors (εt, et) are generated from the following

processes:

εt = α1εt−1 + ηt

et = α2et−1 + ζt

We control the endogeneity by a parameter ρ, which is the correlation between ηt and ζt end-

ing up relating the errors εt and et. The disturbances (ηt, ζt) are drawn from a joint-normal

distribution with mean zero and variance-covariance matrix Σ =

1 ρ

ρ 1

. The error terms uit

and vjt are each generated from standard normal distributions. For simplicity, we set all AR(1)

coefficients involved equal to γj = α1 = α2 = 0.5 for all j = 1, 2, . . . , r. To save some space, in

the rest of the text, we write γj , j = 1, 2, . . . , r in vector form. γ = 0.5 means that γj = 0.5

for all j = 1, 2, . . . , r. The parameter σz controls the influence of factors on the instrument

set. To ensure that the instruments are noisy, we set σz = 0.25. In addition to the presence of

irrelevant factors in xt, the only difference between Bai & Ng (2010) and our design is how the

coefficients are drawn. For example, they generate γ randomly while we keep them fixed. We

keep γ fixed to be parsimonious to show that the variation in the performance stems from the

feature we are targeting. We also check that if we allow γ to be random as in Bai & Ng (2010),

nothing changes in the qualitative results.

4.1.2 Results

The true value of the parameter of interest β1 is 2. We run 500 replications and report the

expectation of the estimate, i.e., E(β̂1), and its root mean squared error (RMSE). We consider

three values of N for a given T : N < T , N ∼ T , and N > T to demonstrate the efficacy of

our method in the high-dimensional setting. We also consider three values of ρ. The case ρ = 0

represents when the data (yt, xt) is i.i.d.; ρ = 0.5 indicates a small to moderate endogeneity case,

as ηt accounts for about half of the variation in εt. Similarly, ρ = 0.9 represents a moderate to

strong endogeneity case. This results in a total of nine (ρ,N) combinations for a given T . We

report results for T = {100, 200, 400}. Table-1 presents the results.

One secular observation from the results is that our method is better in terms of both bias
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.06 2.06 2.01 2.01 0.38 0.15 0.27 0.28
0 5 100 75 2.07 2.06 2.06 2.06 0.36 0.15 0.15 0.15
0 5 100 125 2.07 2.06 - 1.88 0.37 0.15 - 0.59

0 5 200 50 2.05 2.06 2.05 2.04 0.27 0.11 0.11 0.11
0 5 200 150 2.05 2.06 2.06 2.06 0.27 0.11 0.11 0.11
0 5 200 250 2.05 2.06 - 1.96 0.27 0.11 - 0.38

0 5 400 100 2.03 2.05 2.04 2.05 0.18 0.09 0.09 0.09
0 5 400 300 2.02 2.05 2.05 2.05 0.18 0.09 0.09 0.10
0 5 400 500 2.02 2.05 - 1.98 0.18 0.09 - 0.28

0.5 5 100 25 2.13 2.37 2.23 2.26 0.39 0.41 0.38 0.41
0.5 5 100 75 2.13 2.37 2.50 2.52 0.39 0.41 0.53 0.55
0.5 5 100 125 2.12 2.37 - 1.80 0.38 0.41 - 0.65

0.5 5 200 50 2.09 2.33 2.86 2.90 0.29 0.35 0.87 0.92
0.5 5 200 150 2.08 2.33 2.50 2.51 0.28 0.35 0.51 0.52
0.5 5 200 250 2.07 2.33 - 1.93 0.28 0.35 - 0.37

0.5 5 400 100 2.05 2.31 2.88 2.91 0.20 0.32 0.89 0.93
0.5 5 400 300 2.04 2.31 2.45 2.46 0.20 0.32 0.46 0.47
0.5 5 400 500 2.04 2.31 - 1.97 0.20 0.32 - 0.28

0.9 5 100 25 2.20 2.64 2.37 2.42 0.44 0.66 0.47 0.52
0.9 5 100 75 2.22 2.64 2.74 2.76 0.43 0.66 0.76 0.78
0.9 5 100 125 2.22 2.64 - 1.77 0.43 0.66 - 0.74

0.9 5 200 50 2.15 2.61 3.01 3.01 0.31 0.62 1.02 1.06
0.9 5 200 150 2.12 2.61 2.74 2.75 0.30 0.62 0.75 0.76
0.9 5 200 250 2.12 2.61 - 1.92 0.29 0.62 - 0.38

0.9 5 400 100 2.07 2.59 3.02 3.04 0.21 0.59 1.03 1.06
0.9 5 400 300 2.07 2.59 2.71 2.71 0.20 0.59 0.71 0.72
0.9 5 400 500 2.06 2.59 - 1.96 0.20 0.59 - 0.28

Table 1: Simulations Using Design-I with AR Errors (γ = α1 = α2 = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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and RMSE whenever there is an endogeneity (ρ ̸= 0). There are five major observations from

the results in Table-1. First, our method is a reliable approach, exhibiting the least root mean

squared error and lower bias in the majority of cases. The bias and RMSE approach zero as

the sample size T increases, confirming the asymptotic theory. Second, as expected, in the case

of no endogeneity (ρ = 0), OLS is the best method in terms of the lowest RMSE; however, it

is important to note that the OLS estimate is not unbiased due to the presence of dependent

data. Third, the 2SLS method performs better than OLS when endogeneity is introduced, but

only when the number of instruments is small. As the number of instruments increases, the

variance of the 2SLS estimator rises, leading to a deterioration in its performance, a finding that

is corroborated by existing literature Bekker (1994), Berry et al. (1995). Fourth, an increase

in N relative to T has little effect on our estimates relative to the impact observed on other

competing methods. This highlights our method’s capability to produce stable estimates while

effectively handling both low and high-dimensional cases. Finally, an increase in sample size T

reduces the bias and RMSE across all methods.

4.1.3 Discussion

In this simulation setting, the true m(·) is linear, providing an ideal environment for the Factor

Index Variable (FIV) approach of Bai & Ng (2010) to function effectively. The key distinction

here is that not all factors in the instrument set are relevant to the endogenous regressor. Our

supervised method selectively identifies only the relevant factors for xt during the sufficient index

step, in contrast to Bai & Ng (2010), which incorporates all available factors. This supervisory

capability allows our method to estimate x̂t more accurately than competing methods, thereby

yielding a more efficient estimator. The advantages of our approach become increasingly evident

as the sample size T and the strength of endogeneity (ρ) grow, as the gap in RMSE between

our method and competitors widens.

One might wonder why our method exhibits less bias than OLS, even in the absence of

endogeneity. This is attributed to the serial correlation present in the error terms εt and et.

When these error terms are made serially uncorrelated, OLS outperforms our method under no

endogeneity, as shown in Table 6 in the appendix B.2. Under conditions of endogeneity, the

2SLS estimator is expected to outperform OLS, a trend observable in the rows where N = 25.

However, as the number of instruments N increases, the performance of 2SLS declines due to

the increasing variance in the first-stage estimation, as noted in Berry et al. (1995) and discussed
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in Belloni et al. (2012).

It is important to recognize that our method not only benefits from supervision but also

involves the dimensionality reduction of r factors to L Sufficient Dimension Reductions (SDRs).

Thus, the observed advantages may stem from both sources. The SDR step is critical to our

method, making it challenging to disentangle the contributions of each source to the overall

performance gains.

4.1.4 More Results for Robustness

We replicate the exercise done above with various combinations of the presence of serial correla-

tion in factors and errors. In particular, we report the results for serially correlated factors with

serially uncorrelated errors i.e. γ = 0.5 but α1 = α2 = 0 in the Table-6 in the appendix-B.2.

Also, we report results for γj = α1 = α2 = 0 in Table- 8 and for (γj = 0, α1 = α2 = 0.5)

in Table-9. Note that errors (εt, et) are serially uncorrelated but are still endogenous because

ηt, and ζt are still correlated. The summary of these additional results is qualitatively the same

as the findings observed so far in Table-1. Therefore, this verifies and robustifies the conclusion

that our method can supervise the process to filter out the relevant factors.

4.2 Design-II: Gains from Dimension Reduction

In addition to the supervision and the ability to capture the non-linearities, another strength

of our method is to achieve the sufficient dimension reduction required to obtain the E(xt | ft).

While Bai & Ng (2010) achieves a dimensional reduction in the sense that N number of instru-

ments are summarized into r number of factors where r < N is a small number. However, in

addition to this, our method further combines these r factors into a smaller L number of indices

required for the estimation of the conditional mean of the endogenous regressor (equation-4.2).

This is an additional dimension reduction step that also performs the supervision, but we only

focus on gains from the dimension reductions in this section. The gains stem from the fact

that we have L ≤ r number of variables to estimate E(xt | ft), therefore lesser variance in the

estimation procedure.

4.2.1 The Design

To demonstrate this strength, we make all factors relevant by setting the true number of factors

r = 3 and true ϕ = {0.8, 0.5, 0.3} in equations 4.1 to 4.4, ensuring that supervision will not
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provide an advantage. Furthermore, by keeping m(·) as a linear function, we make sure that

capturing non-linearities will not yield benefits. Therefore, if our method performs better than

others (FIV of Bai & Ng (2010) in particular), the improvement should stem from the additional

dimension reductions that reduce variance in the process. We maintain the rest of the settings

as described in section 4.1. The results of this simulation design are presented in Table 2.

4.2.2 Results and Discussions

We observe that our method consistently outperforms the nearest competitors in terms of both

bias and RMSE, demonstrating that further dimension reduction by combining factors into

indices enhances estimation accuracy. Given that the remaining observations are similar to

those outlined in the previous simulation design section (Section 4.1), we omit them here to

conserve space.

It may seem surprising that a more complex, non-parametric method outperforms the sim-

pler FIV approach of Bai & Ng (2010), especially when the true data-generating process aligns

more closely with their method. To address this, we conducted several experiments on simpli-

fied DGPs to compare the performance of SDR-based and OLS-based two-step procedures. Our

findings indicate that SDR combined with a non-parametric approach outperforms OLS-based

FIV, particularly in the presence of endogeneity and serial correlation. The relative performance

of the SDR-based method improves further as the strength of endogeneity, serial correlation, or

both increases. Additionally, the SDR-based method demonstrates superior performance when

the dimensionality N increases. Theoretically, while the SDR-based method may be marginally

less effective than the OLS-based method when the DGP is IID, it consistently outperforms in

more complex data environments.

To maintain transparency, we provide our code and a detailed report of the SDR vs. OLS

experiments, accessible here. We encourage readers to explore the code, verify our results,

and share any insights that might help refine our findings—we would greatly appreciate your

feedback.

In conclusion, while it may be challenging to outperform OLS (or OLS-based methods) when

the true DGP is linear, our method shows clear advantages when the DGP deviates from IID

assumptions.
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.06 2.06 2.00 2.01 0.37 0.15 0.28 0.29
0 3 100 75 2.07 2.06 2.06 2.06 0.37 0.15 0.15 0.15
0 3 100 125 2.07 2.06 - 1.93 0.37 0.15 - 0.42

0 3 200 50 2.04 2.06 2.05 2.04 0.27 0.11 0.11 0.11
0 3 200 150 2.04 2.06 2.06 2.06 0.27 0.11 0.11 0.11
0 3 200 250 2.04 2.06 - 1.97 0.27 0.11 - 0.29

0 3 400 100 2.02 2.05 2.04 2.05 0.18 0.09 0.09 0.09
0 3 400 300 2.02 2.05 2.05 2.05 0.18 0.09 0.09 0.10
0 3 400 500 2.02 2.05 - 1.99 0.18 0.09 - 0.20

0.5 3 100 25 2.10 2.37 2.22 2.28 0.38 0.41 0.37 0.43
0.5 3 100 75 2.10 2.37 2.51 2.52 0.38 0.41 0.54 0.56
0.5 3 100 125 2.10 2.37 - 1.89 0.37 0.41 - 0.41

0.5 3 200 50 2.06 2.33 2.88 2.90 0.27 0.35 0.89 0.95
0.5 3 200 150 2.06 2.33 2.51 2.51 0.27 0.35 0.52 0.53
0.5 3 200 250 2.06 2.33 - 1.96 0.27 0.35 - 0.28

0.5 3 400 100 2.03 2.31 2.89 2.92 0.19 0.32 0.90 0.94
0.5 3 400 300 2.03 2.31 2.45 2.46 0.19 0.32 0.46 0.47
0.5 3 400 500 2.03 2.31 - 1.98 0.19 0.32 - 0.21

0.9 3 100 25 2.15 2.64 2.36 2.42 0.41 0.66 0.46 0.54
0.9 3 100 75 2.16 2.64 2.75 2.77 0.41 0.66 0.77 0.79
0.9 3 100 125 2.17 2.64 - 1.88 0.41 0.66 - 0.42

0.9 3 200 50 2.09 2.61 3.02 3.01 0.28 0.62 1.03 1.08
0.9 3 200 150 2.09 2.61 2.75 2.75 0.28 0.62 0.76 0.76
0.9 3 200 250 2.09 2.61 - 1.95 0.28 0.62 - 0.28

0.9 3 400 100 2.05 2.59 3.03 3.02 0.20 0.59 1.04 1.07
0.9 3 400 300 2.05 2.59 2.71 2.71 0.21 0.59 0.71 0.72
0.9 3 400 500 2.05 2.59 - 1.97 0.20 0.59 - 0.21

Table 2: Simulations using Design-II & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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4.2.3 More Results for Robustness

Under r = 3 and linear m(·) case, we consider various combinations of γ and (α1, α2). The

results for autocorrelated factors with serially uncorrelated errors i.e. γ = 0.5 and α1 = α2 = 0

given in Table-10 in the appendix-B.2. Also, the result for γ = α1 = α2 = 0 specification is

in Table-12 and for γ = 0, α1 = α2 = 0.5 in Table-13. The qualitative results are the same

as discussed for the γ = α1 = α2 = 0.5 specification in the main analysis of this design. This

cements the findings that the dimension reduction property of our method leads to gains in

terms of lower RMSE and lower bias of the final estimator.

4.3 Design-III: Gains of Handling Non-Linearities

One major assumption in Bai & Ng (2010) is that m(·) in equation 4.2 is a linear function. This

can lead to a misspecified model; therefore, we estimate m(·) as a non-parametric function that

captures any present non-linearities. In our design for this section, we keep all factors relevant

for xt but related in a non-linear fashion. This ensures that the improved performance of our

method arises not from the supervision but from capturing the non-linearities.

4.3.1 Design

One simple but widely used example of non-linearity in economics is allowing interactions be-

tween variables. Fan et al. (2017) gives an example of the interaction between financial depen-

dence and economic growth, we borrow their example. We keep the equation 4.1, 4.3, and 4.4

as it is. The equation-4.2 is now:

xt = f1t (f2t + f3t + 1) + et (4.5)

Similar to the section-4.2, we set r = 3 with all factors being relevant for the endogenous

regressor. This will ensure that if our method does better, it will not come from the ability

to supervise. The true sufficient directions are the vectors in the plane Sx|f generated by

ϕ1 = (1, 0, 0)′ and ϕ2 = (0, 1, 1)′/
√
2. In other words, we need L = 2 to sufficiently capture the

non-linearity considered in this case. Had we used the linear model of Bai & Ng (2010), only

one sufficient direction would have been captured, thereby missing the interaction structure.

The rest of the elements of the data-generating process are the same as the section-4.1.
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4.3.2 Results

We report the estimate of the β1 and the root mean squared error (RMSE) of the estimate

calculated using 500 replications in Table-3.

E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.24 2.05 2.01 2.02 0.46 0.16 0.30 0.32
0 3 100 75 2.23 2.05 2.05 2.05 0.43 0.16 0.18 0.18
0 3 100 125 2.23 2.05 - 1.67 0.42 0.16 - 2.02

0 3 200 50 2.20 2.05 2.06 2.05 0.31 0.12 0.13 0.14
0 3 200 150 2.19 2.05 2.05 2.05 0.30 0.12 0.13 0.13
0 3 200 250 2.19 2.05 - 1.87 0.30 0.12 - 0.91

0 3 400 100 2.14 2.04 2.05 2.05 0.20 0.09 0.11 0.11
0 3 400 300 2.14 2.04 2.04 2.04 0.20 0.09 0.10 0.10
0 3 400 500 2.14 2.04 - 1.93 0.20 0.09 - 0.53

0.5 3 100 25 2.28 2.28 2.23 2.26 0.46 0.33 0.41 0.44
0.5 3 100 75 2.28 2.28 2.41 2.42 0.46 0.33 0.46 0.48
0.5 3 100 125 2.28 2.28 - 1.57 0.46 0.33 - 1.83

0.5 3 200 50 2.22 2.25 2.93 2.96 0.33 0.28 0.95 1.00
0.5 3 200 150 2.22 2.25 2.41 2.41 0.32 0.28 0.43 0.43
0.5 3 200 250 2.21 2.25 - 1.87 0.32 0.28 - 1.05

0.5 3 400 100 2.15 2.23 2.94 2.97 0.22 0.24 0.95 0.99
0.5 3 400 300 2.15 2.23 2.36 2.37 0.22 0.24 0.38 0.38
0.5 3 400 500 2.15 2.23 - 1.92 0.21 0.24 - 0.55

0.9 3 100 25 2.35 2.47 2.36 2.41 0.54 0.51 0.49 0.53
0.9 3 100 75 2.35 2.47 2.60 2.62 0.50 0.51 0.64 0.66
0.9 3 100 125 2.36 2.47 - 1.59 0.51 0.51 - 1.98

0.9 3 200 50 2.25 2.45 3.10 3.10 0.34 0.46 1.12 1.16
0.9 3 200 150 2.25 2.45 2.60 2.61 0.34 0.46 0.62 0.62
0.9 3 200 250 2.25 2.45 - 1.84 0.34 0.46 - 0.92

0.9 3 400 100 2.17 2.43 3.11 3.12 0.23 0.44 1.12 1.16
0.9 3 400 300 2.17 2.43 2.57 2.57 0.23 0.44 0.57 0.58
0.9 3 400 500 2.17 2.43 - 1.90 0.22 0.44 - 0.56

Table 3: Simulations using Design-III & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T . ]

Most of the observations from Table 3 reiterate the findings of Table 1 discussed in section 4.1.
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One distinct observation in Table 3 is that the gains from capturing non-linearity are not as

apparent for smaller sample sizes. However, as the sample size begins to grow, our method’s

performance improves, surpassing that of the competitors.

4.3.3 More Results for Robustness

Under r = 3 and non-linear m(·) case, we consider various combinations of γ and (α1, α2). The

results for auto-correlated factors with serially uncorrelated errors i.e. γ = 0.5 and α1 = α2 = 0

given in Table-14 in the appendix-B.2. Also, the result for γ = α1 = α2 = 0 specification is

in Table-16 and for γ = 0, α1 = α2 = 0.5 in Table-17. The qualitative results are the same as

discussed for the γ = α1 = α2 = 0.5 specification in the main analysis of this design.

4.4 Design-4: Both Sparsity and Factor Structure Present in Instruments

When an applied researcher uses many instruments, she may not know whether there is a sparse

or factor structure in the instrument set. Therefore, it is important to demonstrate how our

method compares with competitors in a situation where instruments are neither purely sparse

nor purely from a factor structure. In this design, we allow half of the instruments to share a

factor structure, while the remaining half is sparse. This design can be seen as a middle ground

between sparsity-based methods (e.g., Belloni et al. (2012)) and factor structure-based methods

such as Bai & Ng (2010) and our method.

4.4.1 Design

We allow half of the instruments (from i = 1 to N/2) to share the factor structure given in

equation-4.8. The remaining half of the instruments are sparse, as defined in equations 4.9 and

4.10. The sparse structure implies that some instruments are related to xt, while many may

just represent noise. An exogenous term e2t ∼ N (0, 1) is introduced to make certain sparse

instruments related to xt. Equation 4.9 ensures that N/8 instruments are related to xt through

et, while the remaining 3N/8 instruments are noise.
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The data-generating process is:

yt = β0 + β1xt + εt (4.6)

xt = ϕ
′ft + e2t + et (4.7)

zit = b′
ift + σzuit, 1 ≤ i ≤ N/2, 1 ≤ t ≤ T (4.8)

zit = σz(e2t + uit), N/2 + 1 ≤ i ≤ 5N/8, 1 ≤ t ≤ T (4.9)

zit = σzuit, 5N/8 + 1 ≤ i ≤ N, 1 ≤ t ≤ T (4.10)

fjt = γjfjt−1 + vjt, 1 ≤ j ≤ r (4.11)

We set β0 = 0 and the main parameter of interest β1 = 2. We let r = 3 and ϕ = (0.8, 0.5, 0.3)′,

which means that all factors are relevant for xt and influence the instruments that share factor

structure. We keep m(·) to be linear to keep the design a level-playing field for three competing

methods: Belloni et al. (2012), Bai & Ng (2010), and ours. The rest of the details are the same

as the Design-I discussed in section-4.1.

4.4.2 Results

We denote Belloni et al. (2012)’s method as PLIV i.e. Post-Lasso IV in the tables. The results

are presented in Table-4

The secular observation from the table-4 is that the performance of three competing methods

is comparable. Therefore, when the researcher suspects that both factor structure and sparse

structure may be present in the instrument set, employing both Belloni et al. (2012) or our

approach is likely to yield the same outcome.

4.5 More Designs for Robustness

We have demonstrated so far that our method performs better due to three major strengths:

being a supervised method, achieving considerable dimension reduction, and its ability to handle

non-linearities. One may be curious to know how our method performs when all these challenges

are present simultaneously. We consider five factors (r = 5) driving the instrument set, but

only three are relevant for xt, and m(·) is a non-linear function. The rest of the specifications

are the same as discussed in section 4.1.

The results are reported in Table 19 in Appendix B.2. The results are qualitatively the

same as those in Table 3. We observe a slightly higher RMSE for the competing method FIV,
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E(β̂1) RMSE(β̂1)
ρ T N SIF FIV PLIV SIF FIV PLIV

0 200 50 2.10 2.06 2.08 0.12 0.11 0.11
0 200 150 2.10 2.06 2.09 0.13 0.11 0.12
0 200 250 2.11 2.06 2.09 0.13 0.11 0.12

0.5 200 50 2.52 2.46 2.50 0.54 0.48 0.51
0.5 200 150 2.52 2.37 2.46 0.53 0.38 0.47
0.5 200 250 2.52 2.33 2.45 0.53 0.35 0.46

0.9 200 50 2.91 2.83 2.89 0.91 0.84 0.90
0.9 200 150 2.92 2.67 2.84 0.93 0.68 0.84
0.9 200 250 2.92 2.61 2.83 0.93 0.62 0.83

Table 4: Simulations using Design-4 and AR Errors
[Notes: True value of β1 is 2. ρ represents extent of endogeneity, ρ = 0 means no-endogeneity. Errors
and factors are AR(1) with AR(1) coefficient being 0.5. Other Parameters: r = 3, number of
replications = 500]

which may be due to selecting irrelevant factors. We also consider different combinations of

uncorrelated errors and factors, and the results are reported in Appendix B.2. The qualitative

results remain consistent.

We further replicate the simulation exercise for linear and non-linear m(·) with eight true

factors (r = 8), where only three are relevant for the endogenous regressor xt. All results are

tabulated in Appendix B.2.

After analyzing more than 30 tables of various simulation specifications, we conclude that

our method decisively filters out the relevant factors and combines them in a manner that is

relevant to the endogenous regressor. We now move to apply our method to real-world problems.

5 Empirical Applications

We consider two applications, one is in the automobile industry of empirical industrial organi-

zation (IO) on cross-section data and the other one is in finance on time series data. We discuss

the results and insights.
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5.1 Price Elasticity of Demand for Automobiles

Berry et al. (1995) (hereafter, BLP) points out that the price elasticity of automobile demand

estimated by the 2SLS method is too small to make sense. Expanding on this, Chernozhukov

et al. (2015) demonstrates that the inconsistency in 2SLS estimation can be addressed by incor-

porating higher-order polynomials and interaction terms of the instrumental variable (IV) with

the control variables. In this exercise, we replicate BLP’s empirical application on automobile

demand using Chernozhukov et al. (2015)’s data.

We conducted a principal component analysis of the set of instruments used in Chernozhukov

et al. (2015) and found that about 85% of the information in their instrument set can be

explained by the first two principal components. Moreover, the first two PCs are strongly

related to the endogenous regressor, price. This suggests that there could be a factor structure

in the instrument set that may drive the endogenous regressor (price), implying that our method

can be employed. Philosophically, the decision-making process of an automobile buyer might

arise from a low-rank latent factor structure, which is reflected in many instruments considered

in the BLP problem.

5.1.1 Model

Let the market demand of an automobile product i in period or market t is given by yit =

log (sit) − log (s0t), where sit is the market share of the product i and the subscript 0 is the

outside option in the market or period t. pit is the price that is endogenously related to the

automobile demand. xit is the set of control variables that are observed including product

characteristics, and zit is the set of instruments. Chernozhukov et al. (2015) uses the following

basic specification of Berry et al. (1995)’s model:

yit = log (sit)− log (s0t) = α0pit + x′itβ0 + εit (5.1)

pit = z′itδ0 + x′itγ0 + uit (5.2)

We assume that the high-dimensional set of instrument zit has a factor structure that influences

all the instruments and the endogenous regressor pit, i.e.

zit = λift + νit
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In this application the period is one year apart therefore we treat a car in period t differently

from period t − 1, in other words, we treat it as one datapoint j5. We first obtain ỹj and p̃j

as the residuals of the regression of control variables xj (used in Berry et al. (1995)) on yj and

pj respectively. Then estimate-5.2 as p̃j = m(θ′ift) + ej where ft are the factors that drives

instruments zj and endogenous regressor p̃j . Use the ̂̃pj in the equation-5.1 to estimate the

parameter of interest α0.

5.1.2 Data

We use the final data made available in the replication package of Chernozhukov et al. (2015).

The original paper Berry et al. (1995) uses five controls and ten instruments. Chernozhukov

et al. (2015) builds on it and uses 24 control variables and 48 instruments to fit the application

into their sparse setting. Unlike them, we need not use many controls so we keep on using the

same control variables of the original paper Berry et al. (1995), but, since our paper allows

correlated instruments, therefore, we use all the instruments suggested by both papers.

For the validity of the instruments, one can refer to Berry et al. (1995) and Chernozhukov et al.

(2015). The only difference is that we are using the common components of their instruments.

If a set of instruments satisfies the exclusion restriction, their common component and their

linear combination should also satisfy the same which is our instrument in this application. We

check the relevancy condition also and find that the factors are significantly correlated with the

endogenous regressor with a p-value less than 0.01.6 The instrument variable literature suggests

that a weak instrument is not likely to occur if F-statistics is more than 10, we found our F-stat

to be more than 100. Further, the possibility of weak factors is less likely to occur because

our method selects the combinations of factors that best relate with pj through supervision.

Overall, the instruments used by Berry et al. (1995) and Chernozhukov et al. (2015) can serve

as noisy instruments in our framework. It is natural to see because if the zit are the instruments,

their common component will also be the instruments. Therefore, the technical conditions for

the validity of the instruments are satisfied in our data.

5Our theory is valid for both IID and serially correlated data, but for one-year apart datapoints, the serial
correlation is not that prevalent, so for simplicity, we treat it a cross-section

6We need Assumption-1.1 i.e. E
[
m(θ1

′fj , . . . ,θL
′fj)xj

]
̸= 0 for relevancy. However, if factors are correlated

with xt, it means that for m(·) linear, θ1 being vector of ones and other θj being vectors of zeros, our relevancy
holds. It may also satisfy through more functional forms but we at least guarantee one.
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5.1.3 Results

We estimate the own-price elasticity of automobile demand, given by the parameter α0 of

equation-5.1. We draw random samples with replacement multiple times (bootstrap, 500 times)

and estimate α0. We report the bootstrapped confidence intervals for our method and Cher-

nozhukov et al. (2015)’s method. The basic inversely sloped demand curve suggests that this

estimate should be negative (significantly less than zero).

We find that the bootstrapped 95% confidence intervals for α̂0 estimated by our method

are [−0.161,−0.125] with a mean of −0.152. Further, if the bias survives, it implies that our

estimator is closer to Chernozhukov et al. (2015)’s estimate of −0.185, because the bias is

positive. The coefficient estimated in the original paper Berry et al. (1995) was −0.142. Our

stable results over many sample-splitting procedures give confidence in the estimates. Therefore,

we can argue that, similar to Berry et al. (1995) and Chernozhukov et al. (2015), our method

also captures the important features of the data. This exercise serves as proof of concept that

our method works.

5.2 CAPM beta of BlackRock’s SmallCap ETF

Firms with small market capital are attractive choices for investment because of their high

(potentially multi-bagger) growth potential but they also bring along a higher level of risk

relative to the market. Quantifying this risk is a question of interest for many investors. The

simplest measure used for risk assessment by an investor is beta of the stock estimated by the

Capital Asset Pricing Model (CAPM).

The S&P SmallCap 600® is an index that provides investors with a benchmark for small-sized

companies in the U.S. equities market that meet investability and financial viability criteria.

However, the index is not a tradable security. We therefore, use its tradable counterpart, the

iShares S&P Small-Cap 600 Value ETF7. It is a passive exchange-traded fund (ETF) designed

by BlackRock to mimic the return on S&P Small-Cap 600. We aim to estimate the CAPM beta

of this tradeable security. This ETF is known by its symbol IJS in the market, we’ll use IJS to

refer to our target variable in this application.

The S&P 1500® combines three leading indices, the S&P 500®, the S&P MidCap 400®, and

the S&P SmallCap 600®, which covers approximately 90% of U.S. market capitalization. The

S&P SmallCap 600® is a float-adjusted market cap weighted index of the smallest 600 companies

7This ETF, launched in July 2000, is traded under the symbol IJS on major trading platforms.
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in the S&P 1500®. The market capital of all companies in this index makes around 4% of the

US market capitalization, therefore, one can say that this index is small and is unlikely to cause

factors that drive the US economy or market.

5.2.1 Model

Let yt be the return on our IJS ETF. Using the Capital Asset Pricing Model (CAPM) theory,

we can write:

yt = α+ βR∗
t + ηt (5.3)

where R∗
t is the return on the market portfolio, which is unobservable. We are interested in

the parameter β, which is popularly known as CAPM beta. The true market return R∗
t is not

observed; instead, what we observe is a proxy for the market portfolio, Rt, such as the return

on the Dow Jones Industrial Average (DJIA) index. We can write the observed proxy Rt as:

Rt = R∗
t + et (5.4)

where et is the error term that satisfies the assumptions outlined in the theoretical framework.

Substituting Rt in place of R∗
t in the equation for yt, we get:

yt = α+ βRt + εt

where εt = et − βηt is correlated with Rt; this makes the CAPM beta estimated using OLS

biased. To solve this problem, we need instruments.

We use the return on the Dow Jones Industrial Average (DJIA) as a proxy for market return

and firms in the S&P 500 for the instruments. We do not consider the firms for instruments

that have been a part of the DJIA at any time during our analysis period to avoid any trivial

analysis. Therefore, there is no overlap among the firms in our target variable (yt), instrument

variable set zt, and the endogenous regressor, Rt. Suppose that the returns on an S&P 500 firm

(instrument variable) follow the approximate factor model (Chamberlain & Rothschild (1983))

structure, where the factors are strong in the sense that they follow assumptions 1-3. This can

be written as the following equation:

zit = Λift + uit (5.5)
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Here, ft is a vector of possibly unobservable factors. If ft is equal to R∗ − r∗ where r∗ is the

risk-free return, the equation 5.5 represents a CAPM equation. Similarly, if ft contains Fama-

French factors, the equation 5.5 can be seen as the Fama-French factor model. To allow for a

more general setting, we treat the factors as unobservable.

In this setting, R∗
t can be viewed as a sufficient index of the unobserved factor variables (ft) for

Rt; these unobserved factors drive both the instruments zi i = 1, 2, .., N , and the endogenous

regressor Rt. In the remaining part of this section, we discuss the technical conditions related

to the validity of the instruments and their findings.

5.2.2 Data

For daily returns on the S&P 500 companies’ data, we use the Center for Research in Security

Prices (CRSP) data on security prices traded in the market. We use the Wall Street Journal’s

website for the historical daily price data of the Dow Jones Industrial Average (DJIA) and

the target variable, the IJS ETF. We then calculate the returns based on the closing price

of the trading day. Table 5 contains the list of the companies that have been a part of the

Dow Jones Industrial Average (DJIA) at any point between 2001 and 2023. We remove these

companies from the set of instruments to ensure that the Rt measured by the DJIA is not a

trivial combination of companies in the instrument. Our data runs from 2001 to 2023. We use

the method from Hamilton & Xi (2024) to transform the data into a stationary series.

5.2.3 Validity of Instruments

Relevancy The required relevancy condition is E
[
m(θ′1ft, . . . ,θ

′
Lft)Rt

]
̸= 0. Since factors

are not observable, therefore, we use their consistent estimates, this translates the relevancy

condition to E
[
m̂(θ̂′1f̂t, . . . , θ̂

′
Lf̂t)Rt

]
̸= 0. This condition is weaker than otherwise required

E(zitRt) ̸= 0 for all i = 1, 2, . . . , N in 2SLS method and E(fjtRt) ̸= 0 for all j = 1, 2, . . . , r

of Bai & Ng (2010). In other words, many of the (noisy) instruments zi are allowed to be

invalid i.e. not satisfying the E(zitRt) ̸= 0. We test the estimated factors from the instrument

set to well correlate with our endogenous regressor DJIA with a p-value less than 0.01. The

F-statistics is more than the 10, typically used in the IV literature. Therefore the relevancy

condition is satisfied.
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Exclusion Condition The exclusion restriction requires that our instruments affect yt solely

through the observed proxy for market return, Rt (the return on the DJIA). Since the true

instruments are SDR indices of factors, we need these SDR indices (linear combinations of

factors) to influence yt only through Rt, implying there should be no direct effect of the factors

on yt. We employ S&P500 firms as ‘noisy’ instruments, where the true instrument is the

common factor affecting all of these firms. As shown in Gabaix (2011), the largest firms in the

U.S. explain a significant portion of aggregate market fluctuations. In our context, we argue

that the common factors among S&P500 firms influence general market sentiment, as reflected

in the DJIA. Therefore, these common factors are unlikely to directly impact all the smaller

firms which constitute the IJS ETF, without first affecting the DJIA. It is more plausible that

the common factors influence small firms through general market sentiment, and thus through

Rt, the DJIA. Further, yt i.e. IJS is unlikely to drive our instruments because the aggregate

market capital of small firms in IJS is less than 4% of the stock market capital.

5.2.4 Results

We found the value of CAPM beta of IJS to be equal to 1.51, and we reject the null hypothesis

that the CAPM beta of IJS ETF is less than or equal to one with 99% confidence. It means

that the S&P SmallCap 600 Index measured by IJS ETF is statistically more volatile than the

market. This result makes sense because small-cap companies are usually more risky than the

market. The OLS estimate is about 1.05, much lower than expected.

6 Conclusion

In this paper, we introduce a novel method for causal inference using instrumental variables

when the number of instruments is large. Our approach offers three key advantages: the

ability to incorporate supervision, the flexibility to manage non-linearity, and the capability

for sufficient dimension reduction. These attributes contribute to a more efficient estimation

of the causal parameter of interest. Through extensive simulation exercises, we demonstrate

the effectiveness of our method, showing that it consistently achieves lower bias and root mean

squared error compared to alternative approaches across a variety of specifications. Additionally,

we apply the method to two real-world case studies, yielding meaningful insights. Developing

a semi-parametric efficiency theory for this five-layered procedure is left for future research.
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A Technical Appendix

A.1 Proofs of Theoretical Results

A.1.1 Proof of Lemma 4

Proof. We aim to establish the bias, variance, and asymptotic normality of the local linear

estimator m̂(w). Let’s verify the Lindeberg-Feller CLT Conditions hold in our estimation

procedure. The first condition required by Lindeberg-Feller CLT is Normalization Condition: it

requires that the covariance matrix of the sum of random vectors converges to a positive definite

matrix. For the local linear estimator, we have the random vectors P tT = etKh(wt −w) that

need to be taken care of. The variance of m̂(w) is given by:

Var(m̂(w)) =
σ2

ThLg(w)

∫
K2(ψ)dψ + o

(
1

ThL

)
.

As long as this variance converges to a positive definite matrix as T → ∞, the normalization

condition is satisfied. The second condition is called Lindeberg Condition. It requires:

1

∥Σ∥

T∑
t=1

E
[
∥P tT ∥21{∥P tT ∥ > ϵ∥Σ∥}

] T→∞−−−−→ 0,

for any ϵ > 0. Which in our context, becomes:

1

σ2

T∑
t=1

E
[
e2tK2

h(wt −w)1{e2tK2
h(wt −w) > ϵσ2}

] T→∞−−−−→ 0.

Since et is assumed to have finite variance and the kernel K is bounded and integrates to

1, e2tK2
h(wt − w) should be well-behaved. For large T , the contribution of large deviations of

et is controlled by the indicator function, satisfying the Lindeberg condition if the tails of et

are not too heavy. Thus, the local linear estimator satisfies the conditions required for the

Lindeberg-Feller Central Limit Theorem. Now we can proceed with the proof.

Bias: The local linear estimator m̂(w) is defined as the solution to the weighted least

squares problem:

m̂(w) = argmin
a,b

T∑
t=1

(
xt − a− b⊤(wt −w)

)2
Kh(wt −w),

where Kh(ψ) = h−LK
(
ψ
h

)
is the scaled multivariate kernel.
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Expanding m(wt) around w using a Taylor series, we have:

m(wt) ≈ m(w) + (wt −w)⊤∇m(w) +
1

2
(wt −w)⊤∇2m(w)(wt −w) + · · ·

Since m̂(w) is estimated using a weighted least squares criterion, where weights are determined

by a kernel function Kh(wt −w) with bandwidth h. Substituting this into the weighted least

squares criterion, we can approximate m̂(w) as:

m̂(w) ≈ m(w) +
1

2

∑T
t=1(wt −w)⊤∇2m(w)(wt −w)Kh(wt −w)∑T

t=1Kh(wt −w)

Taking expectations and using the properties of the kernel K(ψ), we obtain:

E[m̂(w)]−m(w) =
1

2
h2tr (G) + o(h2),

where G = ∇2m(w) ·
∫
ψψ⊤K(ψ)dψ.

Variance:

The variance of the estimator is given by:

Var(m̂(w)) = Var

(∑T
t=1 (m(wt) + et)Kh(wt −w)∑T

t=1Kh(wt −w)

)
.

Since m(wt) is smooth, the dominant term in the variance comes from the errors et, leading to:

Var(m̂(w)) =
σ2

ThLg(w)

∫
K2(ψ)dψ + o

(
1

ThL

)
,

where g(w) is the joint density of wt at w.

Asymptotic Normality: To establish asymptotic normality, we use the Lindeberg-Feller

central limit central limit theorem for mixing processes. Our target estimator can be expressed

as:
√
ThL

(
m̂(w)−m(w)− 1

2
h2tr(G)

)
=

1√
ThL

T∑
t=1

etKh(wt −w) + o(1).

By the Lindeberg-Feller central limit theorem. , the sum converges in distribution to a normal

random variable:

√
ThL

(
m̂(w)−m(w)− 1

2
h2tr(G)

)
d−→ N

(
0,

σ2

g(w)

∫
K2(ψ)dψ

)
.
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This completes the proof.

A.1.2 Proof of Theorem-1

Proof. Let Qt = [1 m(wt)] and β = [β0 β1]′. Let’s represent X̂t = [1 x̂t] = [1 m̂(ŵt)].

We get Q when we stack Qt and similarly X̂ by stacking X̂t. The expression of our target

estimator β is:

β̂ = (X̂ ′X̂)−1X̂ ′y

Where X̂ is the predicted value from instruments which is a function of factors. We used hats

on both m and w because we need to estimate them, given that neither the functional form

m(·) nor the factors (or their SDR indices) are observed. We’ll prove an intermediary result

stated in Claim-1 and then will return to the β̂.

Claim-1: m̂(ŵt)−m(wt) = Op(δ
−1
NT ) where δ−1

NT = N−1/2 + T−2/(L+4).

Proof. Let’s write down the Taylor series expansion of m̂(ŵt) = m̂(ŵt1, · · · , ŵtL) around a point

wt = (wt1, · · · , wtL):

m̂(ŵt1, · · · , ŵtL) =m̂(wt1, · · · , wtL) +

L∑
j=1

(ŵtj − wtj)
∂m̂(wt1, · · · , wtL)

∂wj

+
1

2!

L∑
j=1

L∑
k=1

(ŵtj − wtj)(ŵtk − wtk)
∂2m̂(wt1, · · · , wtL)

∂wj∂wk
+ · · ·

Using Lemma-4, we can write the first term in the expression above i.e. m̂(wt1, · · · , wtL) as

m̂(wt1, · · · , wtL) = m(wt1, · · · , wtL) +
1

2
h2tr(G) +Op

( 1

ThL

)
+ op(h

2)

Where G = ∇2m(w) ·
∫
ψψ⊤K(ψ)dψ, the matrix G is finite by assumption-5.5. We can obtain

the convergence rate of the partial derivative ∂m̂(wt1,··· ,wtL)
∂wj

using the chain rule. m̂(wt1, · · · , wtL)

can be replaced by m(wt1, · · · , wtL) and small order terms. Therefore the derivative of the

estimated ∂m̂(wt1,··· ,wtL)
∂wj

will be of the same order as derivative of m(wt1, · · · , wtL) which is O(1)

by Assumption-5.1. Similarly, the second-order derivative terms ∂2m̂(wt1,··· ,wtL)
∂wj∂wk

will be O(1).

Since we have assumed that the function m(·) is twice continuously differentiable, we can say
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that ∂m(wt1,··· ,wtL)
∂wj

and ∂2m(wt1,··· ,wtL)
∂wj∂wk

are O(1). Therefore, we can write m̂(wt1, · · · , wtL) as:

m̂(ŵt1, · · · , ŵtL) =m(wt1, · · · , wtL) +Op(h
2) +Op

( 1

ThL

)
+

L∑
j=1

(ŵtj − wtj)O(1)

+
1

2!

L∑
j=1

L∑
k=1

(ŵtj − wtj)(ŵtk − wtk)O(1) + higher order terms

Using Corollary-1, we know that ŵj = θ̂
′
j f̂t → θ′jft = wj for all j = 1, . . . , L with a rate

ωNT = N−1/2+T−1/2. Which means that (ŵtj−wtj) = Op(ωNT ) for all j = 1, . . . , L. Therefore,

m̂(ŵt1, · · · , ŵtL) =m(wt1, · · · , wtL) +Op(h
2) +Op

( 1

ThL

)
+

L∑
j=1

Op(ωNT )O(1)

+
1

2!

L∑
j=1

L∑
k=1

Op(ωNT )Op(ωNT )Op(h
2)

=m(wt1, · · · , wtL) +Op(h
2) +Op

( 1

ThL

)
+ LOp(ωNT )O(1) + L2Op(ωNT )

2O(1)

Since L is fixed, we can ignore it for convergence rate purposes. Op(ωNT )
2 is of smaller order

relative to Op(ωNT ), therefore we drop it. Also Op(ωNT )O(1) = Op(ωNT ), therefore, we have:

m̂(ŵt1, · · · , ŵtL) =m(wt1, · · · , wtL) +Op(h
2) +Op

( 1

ThL

)
+Op(ωNT )

Lemma-4 says that the Bias of m̂(·) is of order Op(h
2) which implies that bias-square is of order

Op(h
4), on the other hand variance is Op(

1
ThL ). Therefore the optimal bandwidth minimizing

mean squared error is hopt ∝ T−1/(L+4), which translates to Op(h
2) = Op(T

−2/(L+4)). Since

L ≥ 1, therefore the fastest this rate could be is Op(T
−2/5) when L = 1. Therefore, it will

dominate T−1/2 part in Op(ωNT ). Further, Op

(
1

ThL

)
= Op

(
1

T (T
−1
L+4 )L

)
= Op

(
T

−4
L+4

)
which

goes to zero faster than the Op(T
−2/(L+4)), therefore, this term can be ignored relative to

Op(h
2).

Therefore, Op(h
2) +Op(ωNT ) = Op(N

−1/2 + T−2/L+4), which we call Op(δ
−1
NT ). Hence,

m̂(ŵt1, · · · , ŵtL)−m(wt1, · · · , wtL) =Op(h
2) +Op(ωNT )

=Op(N
−1/2 + T−2/L+4)

=Op(δ
−1
NT )
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Let’s get back to the expression of β̂, we have β̂ = (X̂ ′X̂)−1X̂ ′y where X̂ = [1 m̂(ŵ)]. We

want to expand X̂ ′X̂ and X̂ ′y in terms of Q. Matrices with true values are:

Q′Q =

 T
∑T

t=1m(wt)∑T
t=1m(wt)

∑T
t=1m(wt)

2

 ,
and

Q′y =

 ∑T
t=1 yt∑T

t=1m(wt)yt

 .
For X̂, we can write X̂ ′X̂ = Q′Q+∆, where ∆ captures the deviations caused by m̂(ŵ)−m(w).

Specifically:

∆ =

 0
∑T

t=1(m̂(ŵt)−m(wt))∑T
t=1(m̂(ŵt)−m(wt))

∑T
t=1(m̂(ŵt)

2 −m(wt)
2)


∆1,2 = ∆2,1, the two of the elements of the ∆ are m̂(ŵt) −m(wt) = Op(h

2) + Op(ωNT ), let’s

see the ∆2,2:

m̂(ŵt)
2 −m(wt)

2 = (m̂(ŵt)−m(wt)) (m̂(ŵt) +m(wt)) .

The first term in multiplication is: m̂(ŵt) − m(wt) = Op(h
2) + Op(ωNT ). We can write the

second term as: m̂(ŵt) +m(wt) = (m̂(ŵt) −m(wt)) + 2m(wt) = Op(h
2) + Op(ωNT ) + O(1).

m(wt) is O(1) by assumption-5. Therefore,

m̂(ŵt)
2−m(wt)

2 =
(
Op(h

2) +Op(ωNT )
)
(m̂(ŵt) +m(wt)) =

(
Op(h

2)+Op(ωNT )
)(
O(1)

)
= Op(δ

−1
NT )

Therefore,

∆ =

 0
∑T

t=1Op(δ
−1
NT )∑T

t=1Op(δ
−1
NT )

∑T
t=1Op(δ

−1
NT )

 .
Similarly, expand X̂ ′y:

X̂ ′y = Q′y + Γ,
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where:

Γ =

 0∑T
t=1(m̂(ŵt)−m(wt))yt

 =

 0∑T
t=1Op(δ

−1
NT )yt


For two matrices A and B, we have the following identity (one can verify the same by post-

multiplying (A+B)):

(A+B)−1 = A−1 −A−1B(A+B)−1

Set Q′Q = A and ∆ = B, we can write (X̂ ′X̂)−1 = (Q′Q+∆)−1 as:

(
Q′Q+∆

)−1
=
(
Q′Q

)−1 −
(
Q′Q

)−1
∆
(
Q′Q+∆

)−1

Note that yt = β0+β1xt+ε = [1 xt]β+εt = [1 m(wt)+et]β+εt = [1 m(wt)]β+etβ1+εt.

Therefore, stacking t subscript terms, we can write y = Qβ + eβ1 + ε:

β̂ =(X̂ ′X̂)−1X̂ ′y =
(
Q′Q+∆

)−1 (
Q′y + Γ

)
=

((
Q′Q

)−1 −
(
Q′Q

)−1
∆
(
Q′Q+∆

)−1

)(
Q′(Qβ + eβ1 + ε) + Γ

)
=β +

(
Q′Q

)−1
Q′eβ1 +

(
Q′Q

)−1
Q′ε+

(
Q′Q

)−1
Γ−

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′Qβ

−
(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′eβ1 −

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′ε−

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Γ

Therefore,

β̂ − β =
(
Q′Q

)−1
Q′eβ1 +

(
Q′Q

)−1
Q′ε+

(
Q′Q

)−1
Γ−

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′Qβ

−
(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′eβ1 −

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′ε−

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Γ

(A.1)

There are seven terms on the right-hand side in equation-A.1. To organize the discussion, we

state and prove several claims each one related to one term in the equation-A.1.

Claim-2: (Q′Q)−1Q′eβ1 = Op(T
−1/2)
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Proof. The matrix Q′Q is :

Q′Q =

 T
∑T

t=1m(wt)∑T
t=1m(wt)

∑T
t=1m(wt)

2


=

O(T ) O(T )

O(T ) O(T )


The term

∑T
t=1m(wt) is O(T ) because m(wt) is O(1) (Assumption-5.1 and Assumption-5.5).

Therefore, the Q′Q matrix is of order O(T ). Similarly,

Q′eβ1 =

 ∑T
t=1 eβ1∑T

t=1m(wt)eβ1

 =

Op(
√
T )

Op(
√
T )


Note that β1 is non-stochastic and is constant, therefore, can be replaced by O(1). From

Assumption-1.6, et are allowed to be weakly serially correlated so that
∑T

t=1 et is Op(
√
T ). By

Assumption-1.3 and 1.6,
∑T

t=1m(wt)et = Op(
√
T ). This implies

(Q′Q)−1Q′eβ1 = O(T−1)Op(
√
T )O(1) = Op(T

−1/2)

Claim-3: (Q′Q)−1Q′ε = Op(T
−1/2)

Proof. In Claim-2, we have already shown that Q′Q = O(T ). Similarly,

Q′ε =

 ∑T
t=1 εt∑T

t=1m(wt)εt

 =

Op(
√
T )

Op(
√
T )


From Assumption-1.5, εt are allowed to be weakly serially correlated so that

∑T
t=1 εt is Op(

√
T ).

By by exclusion restriction stated as Assumption-1.2, 1
T

∑T
t=1m(wt)εt = Op(

√
T ). Therefore,

(Q′Q)−1Q′ε = O(T−1)Op(
√
T ) = Op(T

−1/2)

Claim-4: (Q′Q)−1 Γ = Op(δ
−1
NT )
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Proof. This term involves Γ in multiplication with the inverse of Q′Q. Let’s have a look at the

behavior of matrix Γ.

Γ =

 0
T∑
t=1

(m̂(ŵt)−m(wt))yt

 =

 0
T∑
t=1

(m̂(ŵt)−m(wt))(β0 + xtβ1 + εt)



=

 0
T∑
t=1
Op(δ

−1
NT )β0 +

T∑
t=1
Op(δ

−1
NT )m(wt)β1 +

T∑
t=1
Op(δ

−1
NT )etβ1 +

T∑
t=1
Op(δ

−1
NT )εt



=

 0
T∑
t=1
Op(δ

−1
NT )

 =

 0

Op(Tδ
−1
NT )


We get the second line by substituting xt = m(wt) + et (equation-2.2). Note that the latter

two terms in Γ2,1 element are multiplied with Op(T
−1/2) random disturbances and therefore

are going to be of smaller order than the first two. Therefore, the overall order of the Γ2,1 is

dominated by the first two terms. Hence,

(Q′Q)−1Γ = O(T−1)

T∑
t=1

Op(Tδ
−1
NT ) = O(T−1)Op(Tδ

−1
NT ) = Op(δ

−1
NT )

Claim-5: (Q′Q)−1∆(Q′Q+∆)−1Q′Qβ = Op(δ
−1
NT )

Proof. We have already shown,

∆ =

 0
∑T

t=1Op(δ
−1
NT )∑T

t=1Op(δ
−1
NT )

∑T
t=1Op(δ

−1
NT )

 and Q′Q =

O(T ) O(T )

O(T ) O(T )


The terms in ∆ are

∑T
t=1Op(δ

−1
NT ) = Op(Tδ

−1
NT ) = Op(T (N

−1/2 + T−2/(L+4)))

= Op(N
−1/2T + T (L+2)/(L+4)). Since N > 0, therefore the N−1/2T -order term will be smaller

than the terms of order T . Hence the terms in ∆ will be of smaller order compared to T -order

terms in Q′Q. Therefore, we can approximate (Q′Q +∆)−1(Q′Q) as Op(1). Using continuous

mapping theorem, this reduces (Q′Q)−1∆(Q′Q+∆)−1Q′Qβ to (Q′Q)−1∆Op(1)β. Since β is

a constant with respect to time, this term’s order is decided by (Q′Q)−1∆. Therefore,

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′Qβ = O(T−1)

T∑
t=1

Op(δ
−1
NT )×Op(T

−1)O(T 1) = Op(δ
−1
NT )
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Claim-6: (Q′Q)−1∆(Q′Q+∆)−1Q′eβ1 = Op(δ
−1
NT )Op(T

−1/2)

Proof. In the previous claims, we have shown Q′Q is of order O(T ), ∆ is of order Op(Tδ
−1
NT ),

(Q′Q+∆)−1 is of order Op(T
−1), and Q′e is of order Op(

√
T ).

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′eβ1 =O(T−1)Op(Tδ

−1
NT )Op(T

−1)Op(T
1/2)O(1)

=Op(δ
−1
NT )Op(T

−1/2)

Claim-7: (Q′Q)−1∆(Q′Q+∆)−1Q′ε = Op(δ
−1
NT )Op(T

−1/2)

Proof. Following Claim-5, this is straightforward. We have already shown that Q′ε is of order

Op(
√
T ). Therefore,

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′ε =O(T−1)

T∑
t=1

Op(δ
−1
NT )×Op(T

−1)Op(T
1/2)

=Op(δ
−1
NT )Op(T

−1/2)

Claim-8: (Q′Q)−1∆(Q′Q+∆)−1 Γ = Op(δ
−2
NT )

Proof. In the previous claims, we have shown that ∆ and Γ are of order Op(Tδ
−1
NT ). Therefore,

we can write,

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Γ =O(T−1)Op(Tδ

−1
NT )Op(T

−1)Op(Tδ
−1
NT )

=Op(δ
−2
NT )

After learning the behavior of all terms involved in the expression of β̂ − β (equation-A.1),
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using Claim-2 to Claim-8, we can write,

β̂ − β =Op(T
−1
2 ) +Op(T

−1
2 ) +Op(δ

−1
NT ) +Op(δ

−1
NT )

+Op(δ
−1
NT )O(T−1/2) +Op(δ

−1
NT )O(T−1/2) +Op(δ

−2
NT )

Note that the third and fourth terms will always dominate other terms. Since L ≥ 1, the fastest

rate possible for the second term isOp(δ
−1
NT ) = Op(N

−1
2 +T

−2
5 ) which goes to zero slower than the

first and second terms which are Op(T
−1
2 ). Therefore, asymptotically (N → ∞ and T → ∞),

the first and second terms will be dominated and, therefore can be ignored. Similarly, the fifth,

sixth, and seventh terms will also be dominated by the third and fourth terms and therefore

can be ignored in asymptotics. Therefore, with L fixed, N → ∞ and T → ∞, we can write:

β̂ − β = Op(δ
−1
NT )

Since δ−1
NT = N−1/2 + T

−2
(L+4) , therefore as N → ∞ and T → ∞, δ−1

NT will go to zero. Therefore

β̂ − β will go to zero, hence β̂ − β = op(1). Therefore, β̂ is a consistent estimator of β.

A.1.3 Proof of Theorem-2

Proof. We have discussed in the proof of theorem-1, that the the expression of (β̂−β) is made

up of several terms out of which only two terms survive. Therefore, for the asymptotics, we

ignore the other terms that go to zero at a faster rate. Therefore we can write,

β̂ − β =
(
Q′Q

)−1
Γ−

(
Q′Q

)−1
∆
(
Q′Q+∆

)−1
Q′Qβ + op(δ

−1
NT )

Let’s analyze (Q′Q+∆)−1Q′Q term:

(
Q′Q+∆

)−1
Q′Q =

[
(Q′Q)−1 − (Q′Q)−1∆

(
Q′Q+∆

)−1
]
Q′Q

=I −
[
(Q′Q)−1∆

(
Q′Q+∆

)−1
Q′Q

]

The second term in the expression above is of smaller order, therefore, we can approximate

(Q′Q+∆)−1Q′Q by an identity matrix, therefore, we can write:

β̂ − β =
(
Q′Q

)−1
(
Γ−∆β

)
+ op(δ

−1
NT )

58



Let’s solve for Γ−∆β. The matrix Γ is:

Γ =

 0
T∑
t=1

(m̂(ŵt)−m(wt))(β0 + xtβ1 + εt)



=

 0
T∑
t=1

(m̂(ŵt)−m(wt))(β0 + (m(wt) + et)β1 + εt)


and

∆β =

 0
∑T

t=1(m̂(ŵt)−m(wt))∑T
t=1(m̂(ŵt)−m(wt))

∑T
t=1(m̂(ŵt)

2 −m(wt)
2)


β0
β1


=

 ∑T
t=1(m̂(ŵt)−m(wt))β1∑T

t=1(m̂(ŵt)−m(wt))β0 +
∑T

t=1(m̂(ŵt)
2 −m(wt)

2)β1


Therefore,

Γ−∆β =

 −
∑T

t=1(m̂(ŵt)−m(wt))β1
T∑
t=1

(m̂(ŵt)−m(wt))
(
(m(wt) + et)β1 + εt

)
−
∑T

t=1(m̂(ŵt)
2 −m(wt)

2)β1



=

 −
∑T

t=1(m̂(ŵt)−m(wt))β1
T∑
t=1

(m̂(ŵt)−m(wt)) [2m(wt)− m̂(ŵt)]β1 +
T∑
t=1

(m̂(ŵt)−m(wt))
(
etβ1 + εt

)


Usually, the rate of the non-parametric estimator is bias-square and variance is
√
ThL, but we

have generated regressors instead of regular variables, therefore the rate N1/2 will also appear,

as shown in Claim-1. Hence, the rate of (m̂(ŵt)−m(wt)) is δ
−1
NT .

We can divide the expression (m̂(ŵt)−m(wt)) into bias and variance parts using Lemma-4:

m̂(ŵ)−m(w) =
1

2
δ−1
NT tr(G) +

1

δNT

T∑
t=1

etKh(wt −w)

Let’s divide matrix Γ−∆β into two parts containing bias and variance. Rewrite the matrix by

substituting 2m(wt)− m̂(ŵt):

2m(wt)− m̂(ŵt) = m(wt)−
1

2
δ−1
NT tr(G)− 1

δNT

T∑
t=1

etKh(wt −w)
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Bias Part (without et and εt): −
∑T

t=1

(
1
2δ

−1
NT tr(G)

)
β1∑T

t=1

(
1
2δ

−1
NT tr(G)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1


Variance Part (with et and εt): −

∑T
t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

)
β1∑T

t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1 +

∑T
t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

) (
etβ1 + εt

)


β̂ − β =
(
Q′Q

)−1

 −
∑T

t=1

(
1
2δ

−1
NT tr(G)

)
β1∑T

t=1

(
1
2δ

−1
NT tr(G)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1


+(Q′Q)−1

 −
∑T

t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

)
β1∑T

t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1 +

∑T
t=1

(∑T
t=1 etKh(wt−w)

δNT

) (
etβ1 + εt

)


This implies:

β̂ − β =

(
Q′Q

T

)−1

 − 1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

)
β1

1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1


+

(
Q′Q

T

)−1

 − 1
T

∑T
t=1

(
1

δNT

∑T
t=1 etKh(wt −w)

)
β1∑T

t=1

(∑T
t=1 etKh(wt−w)

TδNT

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1 +

∑T
t=1

(∑T
t=1 etKh(wt−w)

TδNT

) (
etβ1 + εt

)


Let’s call B =
(
Q′Q
T

)−1

 − 1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

)
β1

1
T

∑T
t=1

(
1
2δ

−1
NT tr(G)

) [
m(wt)− 1

2δ
−1
NT tr(G)

]
β1

, the bias term. Then,

We can write:

δNT

(
β̂ − β − B

)
=

(
Q′Q

T

)−1


− 1

T

∑T
t=1

(∑T
t=1 etKh(wt −w)

)
β1

T∑
t=1

 T∑
t=1

etKh(wt−w)

T

[m(wt)− 1
2δ

−1
NT tr(G)

]
β1 +

T∑
t=1

 T∑
t=1

etKh(wt−w)

T

(etβ1 + εt
)


As δNT → ∞ i.e. both N → ∞ and T → ∞, we can ignore 1
2δ

−1
NT tr(G) term in the second
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row because it goes to zero compared to wt. Therefore, we can write:

δNT

(
β̂ − β − B

)
=

(
Q′Q

T

)−1


− 1

T

∑T
t=1

(∑T
t=1 etKh(wt −w)

)
β1

T∑
t=1

 T∑
t=1

etKh(wt−w)

T

m(wt)β1 +
T∑
t=1

 T∑
t=1

etKh(wt−w)

T

(etβ1 + εt
)


Let’s derive the expression of variance of δNT

(
β̂ − β − B

)
.

V ar
(
δNT

(
β̂ − β − B

)
)
)
=

(
Q′Q

T

)−1

V

(
Q′Q

T

)−1

Where V is a 2x2 matrix. The processes for εt and et are defined as follows:

εt = α1εt−1 + ηt,

et = α2et−1 + ζt,

where ηt and ζt are white noise terms with variances σ2η and σ2ζ , respectively. The correlation

between these noise terms is given by: ρ = cor(ηt, ζt) The variance of εt can be expressed as:

Var(εt) =
σ2η

1− α2
1

Var(et) =
σ2ζ

1− α2
2

.

The covariance can be derived using the properties of AR processes and the correlation ρ:

Cov(εt, et) = ρ
√

Var(εt)Var(et) = ρ

√
σ2η

1− α2
1

·
σ2ζ

1− α2
2

.

Let’s represent the elements of the 2× 2 matrix V as:

V =

V11 V12

V21 V22

 .
Where,

V11:

V11 =

(
1

T

T∑
s=1

Kh(ws −w)

)2

·Var(et) · β21 =

(
1

T

T∑
s=1

Kh(ws −w)

)2

σ2eβ
2
1
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V22: V22 is the variance of the following term:

T∑
t=1

(
1

T

T∑
s=1

esKh(ws −w)

)
m(wt)β1 +

T∑
t=1

(
1

T

T∑
s=1

esKh(ws −w)

)
(etβ1 + εt)

Let’s name the first term V221 and second term V222. Then V22 = E(V 2
221) + 2E(V221V222) +

E(V 2
222). Where,

E(V 2
221) = E

( T∑
t=1

(
1

T

T∑
s=1

esKh(ws −w)

)
m(wt)β1

)2


E(V 2
222) = E

( T∑
t=1

(
1

T

T∑
s=1

esKh(ws −w)

)
(etβ1 + εt)

)2


E(V221V222) = E

[(
T∑
t=1

(
1

T

T∑
s=1

esKh(ws −w)

)
m(wt)β1

)
·

(
T∑
t=1

(
1

T

T∑
s′=1

es′Kh(ws′ −w)

)
(etβ1 + εt)

)]

V12 = V21:

V12 = V21 = 2E

[(
− 1

T

T∑
t=1

(
T∑
t=1

etKh(wt −w)

)
β1

)
·

(
T∑

t′=1

(
1

T

T∑
s=1

esKh(ws −w)

)
m(wt′)β1

)]

+ 2E

[(
− 1

T

T∑
t=1

(
T∑
t=1

etKh(wt −w)

)
β1

)
·

(
T∑

t′=1

(
1

T

T∑
s=1

esKh(ws −w)

)
(et′β1 + εt′)

)]

With this, we can say that:

δNT (β̂ − β − B)
d−→ N

(
0,

(
1

T
Q′Q

)−1

V

(
1

T
Q′Q

)−1
)
,

This completes the proof.
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B Supplementary Appendix: Tables, Algorithms, Data

B.1 Data

We use the Center for Research in Security Prices (CRSP)’s data on security prices traded

in the market. We use the Wall Street Journal’s website for the historical daily price data of

the Dow Jones Industrial Average (DJIA) and IJS ETF. We then calculate the returns based

on the closed price of the trading day. Table-5 contains the list of the companies that have

been a part of the Dow Jones Industrial Average (DJIA) at any point between 2001 to 2023.

FRED-MD is a monthly database for macroeconomic research available on this website. The

Name Ticker Year A/D Name Ticker Yead A/D

AT&T T 2004 (D) Verizon VZ 2004 (A)
International Paper IP 2004 (D) Kodak KODK 2004 (D)
American Intern’l Group AIG 2004 (A) Pfizer PFE 2004 (A)
Bank of America BAC 2008 (A) Altria MO 2008 (D)
Honeywell HON 2008 (D) Chevron CVX 2008 (A)
American Intern’l Group AIG 2008 (D) Kraft KHC 2008 (A)
Travelers Companies TRV 2009(A) Citigroup C 2009 (D)
General Motors GM 2009 (D) Cisco Systems CSCO 2009 (A)
UnitedHealth Group UNH 2012 (A) Kraft KHC 2012 (D)
Alcoa AA 2013 (D) Nike NKE 2013 (A)
Bank of America BAC 2013 (D) Goldman Sachs GS 2013 (A)
Hewlett-Packard HPQ 2013 (D) Visa V 2013 (A)
AT&T T 2015 (D) Apple AAPL 2015 (A)
General Electric GE 2018 (D) Walgreens WBA 2018 (A)
DowDuPont Inc. DWDP 2019 (D) Dow Inc DOW 2019 (A)
ExxonMobil XOM 2020 (D) Salesforce CRM 2020 (A)
Raytheon RTX 2020 (D) Honeywell HON 2020 (A)
Pfizer PFE 2020 (D) Amgen AMGN 2020 (A)
Microsoft Corporation MSFT NC Walmart Inc. WMT NC
JPMorgan Chase & Co. JPM NC Boeing BA NC
The Procter & Gamble Company PG NC Intel INTC NC
Johnson & Johnson JNJ NC Walt Disney DIS NC
Coca-Cola KO NC Merck Inc. MRK NC
McDonald’s Corporation MCD NC Caterpillar CAT NC
The Home Depot HD NC IBM IBM NC
American Express AXP NC 3M Company MMM NC

Table 5: Firms Added (A), Deleted (D), and No Change (NC) in Dow Jones Industrial Average
during 2001-2023

detailed description of this data is available in McCracken & Ng (2016).
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B.2 Simulations

This section provides the results of various simulation designs and their sub-cases. In addition

to three designs considered in the main text, we also provide a section “more designs” to check

the robustness of the results.

B.2.1 Design-I

This subsection contains the simulation results of the design discussed in section-4.1. We pro-

vide a small table that tabulates the simulation tables in this sub-section.

Table-No Serially Correlated Factors? Serially Correlated Errors?

Table-6 Yes No

Table-7 Yes Yes

Table-8 No No

Table-9 No Yes

B.2.2 Design-II

This subsection contains the simulation results of the design discussed in section-4.2. We pro-

vide a small table that tabulates the simulation tables in this sub-section.

Table-No Serially Correlated Factors? Serially Correlated Errors?

Table-10 Yes No

Table-11 Yes Yes

Table-12 No No

Table-13 No Yes
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.04 2.01 1.96 1.96 0.26 0.10 0.19 0.20
0 5 100 75 2.04 2.01 2.01 2.01 0.25 0.10 0.11 0.10
0 5 100 125 2.04 2.01 - 1.90 0.24 0.10 - 0.35

0 5 200 50 2.02 2.01 2.00 2.00 0.17 0.07 0.07 0.08
0 5 200 150 2.03 2.01 2.00 2.00 0.17 0.07 0.07 0.07
0 5 200 250 2.03 2.01 - 1.96 0.17 0.07 - 0.24

0.5 5 100 25 2.09 2.33 2.18 2.20 0.30 0.36 0.27 0.30
0.5 5 100 75 2.10 2.33 2.44 2.46 0.28 0.36 0.46 0.48
0.5 5 100 125 2.10 2.33 - 1.86 0.27 0.36 - 0.41

0.5 5 200 50 2.06 2.30 2.72 2.75 0.20 0.31 0.72 0.77
0.5 5 200 150 2.06 2.30 2.43 2.43 0.19 0.31 0.44 0.44
0.5 5 200 250 2.05 2.30 - 1.94 0.19 0.31 - 0.25

0.9 5 100 25 2.15 2.56 2.28 2.32 0.33 0.57 0.34 0.39
0.9 5 100 75 2.15 2.56 2.64 2.66 0.31 0.57 0.66 0.67
0.9 5 100 125 2.13 2.56 - 1.85 0.30 0.57 - 0.46

0.9 5 200 50 2.09 2.53 2.84 2.87 0.21 0.53 0.85 0.89
0.9 5 200 150 2.08 2.53 2.63 2.63 0.20 0.53 0.63 0.64
0.9 5 200 250 2.08 2.53 - 1.94 0.20 0.53 - 0.25

Table 6: Simulations using Design-I & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.06 2.06 2.01 2.01 0.38 0.15 0.27 0.28
0 5 100 75 2.07 2.06 2.06 2.06 0.36 0.15 0.15 0.15
0 5 100 125 2.07 2.06 - 1.88 0.37 0.15 - 0.59

0 5 200 50 2.05 2.06 2.05 2.04 0.27 0.11 0.11 0.11
0 5 200 150 2.05 2.06 2.06 2.06 0.27 0.11 0.11 0.11
0 5 200 250 2.05 2.06 - 1.96 0.27 0.11 - 0.38

0 5 400 100 2.03 2.05 2.04 2.05 0.18 0.09 0.09 0.09
0 5 400 300 2.02 2.05 2.05 2.05 0.18 0.09 0.09 0.10
0 5 400 500 2.02 2.05 - 1.98 0.18 0.09 - 0.28

0.5 5 100 25 2.13 2.37 2.23 2.26 0.39 0.41 0.38 0.41
0.5 5 100 75 2.13 2.37 2.50 2.52 0.39 0.41 0.53 0.55
0.5 5 100 125 2.12 2.37 - 1.80 0.38 0.41 - 0.65

0.5 5 200 50 2.09 2.33 2.86 2.90 0.29 0.35 0.87 0.92
0.5 5 200 150 2.08 2.33 2.50 2.51 0.28 0.35 0.51 0.52
0.5 5 200 250 2.07 2.33 - 1.93 0.28 0.35 - 0.37

0.5 5 400 100 2.05 2.31 2.88 2.91 0.20 0.32 0.89 0.93
0.5 5 400 300 2.04 2.31 2.45 2.46 0.20 0.32 0.46 0.47
0.5 5 400 500 2.04 2.31 - 1.97 0.20 0.32 - 0.28

0.9 5 100 25 2.20 2.64 2.37 2.42 0.44 0.66 0.47 0.52
0.9 5 100 75 2.22 2.64 2.74 2.76 0.43 0.66 0.76 0.78
0.9 5 100 125 2.22 2.64 - 1.77 0.43 0.66 - 0.74

0.9 5 200 50 2.15 2.61 3.01 3.01 0.31 0.62 1.02 1.06
0.9 5 200 150 2.12 2.61 2.74 2.75 0.30 0.62 0.75 0.76
0.9 5 200 250 2.12 2.61 - 1.92 0.29 0.62 - 0.38

0.9 5 400 100 2.07 2.59 3.02 3.04 0.21 0.59 1.03 1.06
0.9 5 400 300 2.07 2.59 2.71 2.71 0.20 0.59 0.71 0.72
0.9 5 400 500 2.06 2.59 - 1.96 0.20 0.59 - 0.28

Table 7: Simulations using Design-I & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

66



E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.05 2.01 1.95 1.96 0.27 0.10 0.20 0.21
0 5 100 75 2.04 2.01 2.01 2.01 0.26 0.10 0.10 0.10
0 5 100 125 2.05 2.01 - 1.95 0.25 0.10 - 0.39

0 5 200 50 2.02 2.01 2.00 2.00 0.17 0.07 0.07 0.08
0 5 200 150 2.03 2.01 2.00 2.00 0.17 0.07 0.07 0.07
0 5 200 250 2.03 2.01 - 1.96 0.17 0.07 - 0.24

0.5 5 100 25 2.12 2.35 2.21 2.24 0.32 0.37 0.30 0.32
0.5 5 100 75 2.12 2.35 2.47 2.48 0.41 0.37 0.49 0.50
0.5 5 100 125 2.13 2.35 - 1.91 0.30 0.37 - 0.44

0.5 5 200 50 2.06 2.30 2.72 2.74 0.20 0.31 0.72 0.77
0.5 5 200 150 2.06 2.30 2.43 2.43 0.19 0.31 0.44 0.44
0.5 5 200 250 2.05 2.30 - 1.94 0.19 0.31 - 0.25

0.9 5 100 25 2.19 2.59 2.33 2.36 0.37 0.60 0.39 0.42
0.9 5 100 75 2.21 2.59 2.68 2.69 0.35 0.60 0.69 0.70
0.9 5 100 125 2.20 2.59 - 1.89 0.36 0.60 - 0.49

0.9 5 200 50 2.09 2.53 2.84 2.88 0.21 0.53 0.85 0.89
0.9 5 200 150 2.08 2.53 2.63 2.63 0.20 0.53 0.63 0.64
0.9 5 200 250 2.08 2.53 - 1.94 0.20 0.53 - 0.25

Table 8: imulations using Design-I & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.09 2.06 2.01 2.02 0.35 0.13 0.25 0.26
0 5 100 75 2.08 2.06 2.06 2.06 0.34 0.13 0.13 0.13
0 5 100 125 2.07 2.06 - 1.94 0.36 0.13 - 0.48

0 5 200 50 2.06 2.07 2.05 2.05 0.23 0.10 0.09 0.09
0 5 200 150 2.05 2.07 2.06 2.06 0.23 0.10 0.10 0.10
0 5 200 250 2.05 2.07 - 1.99 0.23 0.10 - 0.33

0 5 400 100 2.03 2.06 2.05 2.05 0.17 0.09 0.08 0.08
0 5 400 300 2.03 2.06 2.06 2.06 0.17 0.09 0.09 0.09
0 5 400 500 2.03 2.06 - 2.00 0.17 0.09 - 0.24

0.5 5 100 25 2.14 2.39 2.27 2.31 0.39 0.42 0.39 0.43
0.5 5 100 75 2.17 2.39 2.54 2.56 0.38 0.42 0.57 0.59
0.5 5 100 125 2.14 2.39 - 1.88 0.35 0.42 - 0.50

0.5 5 200 50 2.10 2.35 2.94 2.94 0.26 0.36 0.95 0.97
0.5 5 200 150 2.07 2.35 2.54 2.55 0.24 0.36 0.55 0.56
0.5 5 200 250 2.07 2.35 - 1.96 0.23 0.36 - 0.32

0.5 5 400 100 2.05 2.32 2.95 2.95 0.18 0.33 0.96 0.98
0.5 5 400 300 2.04 2.32 2.48 2.49 0.18 0.33 0.49 0.50
0.5 5 400 500 2.04 2.32 - 1.99 0.18 0.33 - 0.25

0.9 5 100 25 2.21 2.67 2.42 2.47 0.42 0.69 0.50 0.55
0.9 5 100 75 2.23 2.67 2.79 2.80 0.43 0.69 0.81 0.82
0.9 5 100 125 2.22 2.67 - 1.86 0.41 0.69 - 0.53

0.9 5 200 50 2.16 2.64 3.09 3.09 0.30 0.64 1.09 1.11
0.9 5 200 150 2.14 2.64 2.79 2.80 0.28 0.64 0.80 0.80
0.9 5 200 250 2.13 2.64 - 1.95 0.26 0.64 - 0.32

0.9 5 400 100 2.06 2.62 3.09 3.09 0.19 0.62 1.10 1.11
0.9 5 400 300 2.06 2.62 2.74 2.75 0.19 0.62 0.75 0.75
0.9 5 400 500 2.06 2.62 - 1.98 0.19 0.62 - 0.25

Table 9: Simulations using Design-I & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

68



E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.04 2.01 1.95 1.96 0.24 0.10 0.19 0.20
0 3 100 75 2.04 2.01 2.01 2.01 0.24 0.10 0.10 0.10
0 3 100 125 2.04 2.01 - 1.94 0.23 0.10 - 0.26

0 3 200 50 2.02 2.01 2.00 2.00 0.16 0.07 0.07 0.07
0 3 200 150 2.02 2.01 2.00 2.00 0.16 0.07 0.07 0.07
0 3 200 250 2.02 2.01 - 1.97 0.16 0.07 - 0.18

0.5 3 100 25 2.08 2.33 2.17 2.22 0.27 0.36 0.26 0.32
0.5 3 100 75 2.07 2.33 2.45 2.46 0.26 0.36 0.47 0.48
0.5 3 100 125 2.08 2.33 - 1.92 0.26 0.36 - 0.27

0.5 3 200 50 2.04 2.30 2.72 2.76 0.18 0.31 0.73 0.79
0.5 3 200 150 2.04 2.30 2.43 2.43 0.18 0.31 0.44 0.44
0.5 3 200 250 2.04 2.30 - 1.96 0.18 0.31 - 0.19

0.9 3 100 25 2.11 2.56 2.28 2.34 0.28 0.57 0.33 0.41
0.9 3 100 75 2.11 2.56 2.65 2.66 0.29 0.57 0.66 0.67
0.9 3 100 125 2.10 2.56 - 1.92 0.29 0.57 - 0.27

0.9 3 200 50 2.05 2.53 2.85 2.84 0.19 0.53 0.85 0.91
0.9 3 200 150 2.06 2.53 2.63 2.64 0.19 0.53 0.64 0.64
0.9 3 200 250 2.06 2.53 - 1.96 0.20 0.53 - 0.19

Table 10: Simulations using Design-II & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.06 2.06 2.00 2.01 0.37 0.15 0.28 0.29
0 3 100 75 2.07 2.06 2.06 2.06 0.37 0.15 0.15 0.15
0 3 100 125 2.07 2.06 - 1.93 0.37 0.15 - 0.42

0 3 200 50 2.04 2.06 2.05 2.04 0.27 0.11 0.11 0.11
0 3 200 150 2.04 2.06 2.06 2.06 0.27 0.11 0.11 0.11
0 3 200 250 2.04 2.06 - 1.97 0.27 0.11 - 0.29

0 3 400 100 2.02 2.05 2.04 2.05 0.18 0.09 0.09 0.09
0 3 400 300 2.02 2.05 2.05 2.05 0.18 0.09 0.09 0.10
0 3 400 500 2.02 2.05 - 1.99 0.18 0.09 - 0.20

0.5 3 100 25 2.10 2.37 2.22 2.28 0.38 0.41 0.37 0.43
0.5 3 100 75 2.10 2.37 2.51 2.52 0.38 0.41 0.54 0.56
0.5 3 100 125 2.10 2.37 - 1.89 0.37 0.41 - 0.41

0.5 3 200 50 2.06 2.33 2.88 2.90 0.27 0.35 0.89 0.95
0.5 3 200 150 2.06 2.33 2.51 2.51 0.27 0.35 0.52 0.53
0.5 3 200 250 2.06 2.33 - 1.96 0.27 0.35 - 0.28

0.5 3 400 100 2.03 2.31 2.89 2.92 0.19 0.32 0.90 0.94
0.5 3 400 300 2.03 2.31 2.45 2.46 0.19 0.32 0.46 0.47
0.5 3 400 500 2.03 2.31 - 1.98 0.19 0.32 - 0.21

0.9 3 100 25 2.15 2.64 2.36 2.42 0.41 0.66 0.46 0.54
0.9 3 100 75 2.16 2.64 2.75 2.77 0.41 0.66 0.77 0.79
0.9 3 100 125 2.17 2.64 - 1.88 0.41 0.66 - 0.42

0.9 3 200 50 2.09 2.61 3.02 3.01 0.28 0.62 1.03 1.08
0.9 3 200 150 2.09 2.61 2.75 2.75 0.28 0.62 0.76 0.76
0.9 3 200 250 2.09 2.61 - 1.95 0.28 0.62 - 0.28

0.9 3 400 100 2.05 2.59 3.03 3.02 0.20 0.59 1.04 1.07
0.9 3 400 300 2.05 2.59 2.71 2.71 0.21 0.59 0.71 0.72
0.9 3 400 500 2.05 2.59 - 1.97 0.20 0.59 - 0.21

Table 11: Simulations using Design-II & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.05 2.01 1.95 1.95 0.26 0.10 0.20 0.20
0 3 100 75 2.04 2.01 2.01 2.01 0.26 0.10 0.10 0.10
0 3 100 125 2.05 2.01 - 1.96 0.26 0.10 - 0.27

0 3 200 50 2.03 2.01 2.00 2.00 0.18 0.07 0.07 0.07
0 3 200 150 2.03 2.01 2.00 2.00 0.18 0.07 0.07 0.07
0 3 200 250 2.03 2.01 - 1.98 0.18 0.07 - 0.19

0.5 3 100 25 2.09 2.35 2.20 2.23 0.29 0.37 0.29 0.32
0.5 3 100 75 2.09 2.35 2.47 2.48 0.29 0.37 0.49 0.50
0.5 3 100 125 2.09 2.35 - 1.95 0.28 0.37 - 0.29

0.5 3 200 50 2.07 2.32 2.78 2.79 0.19 0.33 0.78 0.81
0.5 3 200 150 2.05 2.32 2.46 2.46 0.19 0.33 0.46 0.47
0.5 3 200 250 2.05 2.32 - 1.98 0.19 0.33 - 0.19

0.9 3 100 25 2.12 2.59 2.32 2.36 0.32 0.60 0.37 0.42
0.9 3 100 75 2.13 2.59 2.68 2.69 0.31 0.60 0.69 0.70
0.9 3 100 125 2.13 2.59 - 1.94 0.32 0.60 - 0.30

0.9 3 200 50 2.08 2.56 2.91 2.88 0.20 0.56 0.91 0.94
0.9 3 200 150 2.07 2.56 2.67 2.67 0.21 0.56 0.67 0.67
0.9 3 200 250 2.07 2.56 - 1.98 0.21 0.56 - 0.20

Table 12: Simulations using Design-II & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

71



E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.06 2.06 2.00 2.01 0.33 0.13 0.25 0.27
0 3 100 75 2.06 2.06 2.06 2.06 0.33 0.13 0.13 0.13
0 3 100 125 2.06 2.06 - 1.96 0.34 0.13 - 0.35

0 3 200 50 2.05 2.07 2.05 2.05 0.23 0.10 0.09 0.09
0 3 200 150 2.04 2.07 2.07 2.06 0.23 0.10 0.10 0.09
0 3 200 250 2.04 2.07 - 1.99 0.24 0.10 - 0.25

0.5 3 100 25 2.10 2.39 2.26 2.30 0.35 0.42 0.38 0.43
0.5 3 100 75 2.11 2.39 2.55 2.56 0.35 0.42 0.57 0.59
0.5 3 100 125 2.10 2.39 - 1.93 0.35 0.42 - 0.36

0.5 3 200 50 2.09 2.35 2.95 2.92 0.25 0.36 0.96 0.97
0.5 3 200 150 2.06 2.35 2.55 2.55 0.23 0.36 0.55 0.56
0.5 3 200 250 2.07 2.35 - 1.98 0.24 0.36 - 0.24

0.9 3 100 25 2.16 2.67 2.41 2.44 0.39 0.69 0.49 0.54
0.9 3 100 75 2.17 2.67 2.79 2.81 0.40 0.69 0.81 0.83
0.9 3 100 125 2.16 2.67 - 1.92 0.38 0.69 - 0.37

0.9 3 200 50 2.12 2.64 3.09 3.03 0.27 0.64 1.10 1.10
0.9 3 200 150 2.09 2.64 2.80 2.80 0.26 0.64 0.80 0.80
0.9 3 200 250 2.09 2.64 - 1.97 0.26 0.64 - 0.24

Table 13: Simulations using Design-II & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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B.2.3 Design-III

This subsection contains the simulation results of the design discussed in section-4.3. We pro-

vide a small table that tabulates the simulation tables in this sub-section.

Table-No Serially Correlated Factors? Serially Correlated Errors?

Table-14 Yes No

Table-15 Yes Yes

Table-16 No No

Table-17 No Yes

E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.21 2.01 1.96 1.96 0.33 0.12 0.22 0.23
0 3 100 75 2.20 2.01 2.01 2.01 0.31 0.12 0.13 0.13
0 3 100 125 2.20 2.01 - 1.79 0.31 0.12 - 0.98

0 3 200 50 2.16 2.00 2.00 2.00 0.23 0.09 0.10 0.10
0 3 200 150 2.15 2.00 2.00 2.00 0.23 0.09 0.09 0.09
0 3 200 250 2.15 2.00 - 1.86 0.23 0.09 - 0.60

0.5 3 100 25 2.25 2.23 2.17 2.20 0.36 0.27 0.29 0.32
0.5 3 100 75 2.24 2.23 2.35 2.36 0.34 0.27 0.38 0.39
0.5 3 100 125 2.24 2.23 - 1.69 0.35 0.27 - 1.30

0.5 3 200 50 2.19 2.21 2.77 2.80 0.26 0.23 0.79 0.84
0.5 3 200 150 2.18 2.21 2.33 2.34 0.25 0.23 0.35 0.35
0.5 3 200 250 2.18 2.21 - 1.86 0.25 0.23 - 0.62

0.9 3 100 25 2.29 2.39 2.27 2.30 0.40 0.42 0.36 0.40
0.9 3 100 75 2.29 2.39 2.51 2.52 0.40 0.42 0.53 0.54
0.9 3 100 125 2.29 2.39 - 1.67 0.39 0.42 - 1.35

0.9 3 200 50 2.22 2.37 2.92 2.96 0.28 0.38 0.93 0.99
0.9 3 200 150 2.21 2.37 2.49 2.50 0.26 0.38 0.51 0.51
0.9 3 200 250 2.20 2.37 - 1.85 0.26 0.38 - 0.63

Table 14: Simulations using Design-III & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.24 2.05 2.01 2.02 0.46 0.16 0.30 0.32
0 3 100 75 2.23 2.05 2.05 2.05 0.43 0.16 0.18 0.18
0 3 100 125 2.23 2.05 - 1.67 0.42 0.16 - 2.02

0 3 200 50 2.20 2.05 2.06 2.05 0.31 0.12 0.13 0.14
0 3 200 150 2.19 2.05 2.05 2.05 0.30 0.12 0.13 0.13
0 3 200 250 2.19 2.05 - 1.87 0.30 0.12 - 0.91

0 3 400 100 2.14 2.04 2.05 2.05 0.20 0.09 0.11 0.11
0 3 400 300 2.14 2.04 2.04 2.04 0.20 0.09 0.10 0.10
0 3 400 500 2.14 2.04 - 1.93 0.20 0.09 - 0.53

0.5 3 100 25 2.28 2.28 2.23 2.26 0.46 0.33 0.41 0.44
0.5 3 100 75 2.28 2.28 2.41 2.42 0.46 0.33 0.46 0.48
0.5 3 100 125 2.28 2.28 - 1.57 0.46 0.33 - 1.83

0.5 3 200 50 2.22 2.25 2.93 2.96 0.33 0.28 0.95 1.00
0.5 3 200 150 2.22 2.25 2.41 2.41 0.32 0.28 0.43 0.43
0.5 3 200 250 2.21 2.25 - 1.87 0.32 0.28 - 1.05

0.5 3 400 100 2.15 2.23 2.94 2.97 0.22 0.24 0.95 0.99
0.5 3 400 300 2.15 2.23 2.36 2.37 0.22 0.24 0.38 0.38
0.5 3 400 500 2.15 2.23 - 1.92 0.21 0.24 - 0.55

0.9 3 100 25 2.35 2.47 2.36 2.41 0.54 0.51 0.49 0.53
0.9 3 100 75 2.35 2.47 2.60 2.62 0.50 0.51 0.64 0.66
0.9 3 100 125 2.36 2.47 - 1.59 0.51 0.51 - 1.98

0.9 3 200 50 2.25 2.45 3.10 3.10 0.34 0.46 1.12 1.16
0.9 3 200 150 2.25 2.45 2.60 2.61 0.34 0.46 0.62 0.62
0.9 3 200 250 2.25 2.45 - 1.84 0.34 0.46 - 0.92

0.9 3 400 100 2.17 2.43 3.11 3.12 0.23 0.44 1.12 1.16
0.9 3 400 300 2.17 2.43 2.57 2.57 0.23 0.44 0.57 0.58
0.9 3 400 500 2.17 2.43 - 1.90 0.22 0.44 - 0.56

Table 15: Simulations using Design-III & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T . ]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.21 2.01 1.95 1.96 0.35 0.11 0.22 0.23
0 3 100 75 2.19 2.01 2.01 2.01 0.32 0.11 0.12 0.12
0 3 100 125 2.19 2.01 - 1.84 0.32 0.11 - 1.34

0 3 200 50 2.17 2.01 2.00 2.00 0.24 0.08 0.09 0.09
0 3 200 150 2.17 2.01 2.00 2.00 0.24 0.08 0.08 0.08
0 3 200 250 2.17 2.01 - 1.94 0.24 0.08 - 0.63

0.5 3 100 25 2.29 2.28 2.21 2.23 0.43 0.31 0.31 0.33
0.5 3 100 75 2.28 2.28 2.40 2.41 0.40 0.31 0.43 0.44
0.5 3 100 125 2.28 2.28 - 1.77 0.39 0.31 - 1.19

0.5 3 200 50 2.22 2.25 2.83 2.85 0.28 0.26 0.84 0.86
0.5 3 200 150 2.21 2.25 2.39 2.39 0.27 0.26 0.40 0.40
0.5 3 200 250 2.21 2.25 - 1.93 0.26 0.26 - 0.52

0.9 3 100 25 2.34 2.46 2.32 2.35 0.44 0.48 0.39 0.42
0.9 3 100 75 2.34 2.46 2.58 2.59 0.47 0.48 0.60 0.61
0.9 3 100 125 2.34 2.46 - 1.72 0.45 0.48 - 1.32

0.9 3 200 50 2.25 2.44 2.97 2.96 0.30 0.44 0.98 1.00
0.9 3 200 150 2.24 2.44 2.57 2.57 0.29 0.44 0.57 0.58
0.9 3 200 250 2.24 2.44 - 1.91 0.28 0.44 - 0.55

Table 16: Simulations using Design-III & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.24 2.05 2.01 2.01 0.39 0.15 0.27 0.28
0 3 100 75 2.23 2.05 2.06 2.06 0.39 0.15 0.15 0.15
0 3 100 125 2.22 2.05 - 1.87 0.37 0.15 - 1.32

0 3 200 50 2.21 2.06 2.05 2.05 0.29 0.11 0.11 0.11
0 3 200 150 2.21 2.06 2.06 2.06 0.29 0.11 0.11 0.11
0 3 200 250 2.20 2.06 - 1.97 0.29 0.11 - 0.62

0.5 3 100 25 2.33 2.32 2.27 2.30 0.46 0.36 0.41 0.43
0.5 3 100 75 2.31 2.32 2.48 2.49 0.44 0.36 0.51 0.52
0.5 3 100 125 2.30 2.32 - 1.64 0.43 0.36 - 2.53

0.5 3 200 50 2.25 2.28 3.00 2.99 0.32 0.30 1.01 1.02
0.5 3 200 150 2.23 2.28 2.47 2.47 0.30 0.30 0.48 0.48
0.5 3 200 250 2.23 2.28 - 1.94 0.30 0.30 - 0.60

0.9 3 100 25 2.40 2.55 2.41 2.44 0.52 0.57 0.51 0.54
0.9 3 100 75 2.38 2.55 2.69 2.70 0.50 0.57 0.72 0.73
0.9 3 100 125 2.37 2.55 - 1.78 0.51 0.57 - 2.46

0.9 3 200 50 2.29 2.52 3.16 3.14 0.35 0.52 1.17 1.19
0.9 3 200 150 2.27 2.52 2.69 2.69 0.34 0.52 0.69 0.70
0.9 3 200 250 2.27 2.52 - 1.93 0.33 0.52 - 0.66

Table 17: Simulations using Design-III & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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B.2.4 More Designs

This subsection contains the simulation results of designs with features of the already discussed

ones. We provide a small table that tabulates the simulation tables in this sub-section. To save

space, we denote “Serially Correlated Factors” by “AR Factors?”. Supervision and dimension

reduction are required in all the designs in this section. Non-linearity is sometimes required,

but sometimes may not be. We add a new column to indicate whether non-linearity is to be

taken care of.

Table-No True Number of Factors(r) AR Factors AR Errors m(·) is Non-linear

Table-18 5 Yes No Yes

Table-19 5 Yes Yes Yes

Table-20 5 No No Yes

Table-21 5 No Yes Yes

Table-22 8 Yes No No

Table-23 8 Yes No Yes

Table-24 8 Yes Yes No

Table-25 8 Yes Yes Yes

Table-26 8 No No No

Table-27 8 No No Yes

Table-28 8 No Yes No

Table-29 8 No Yes Yes
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.23 2.01 1.96 1.97 0.42 0.12 0.22 0.23
0 5 100 75 2.23 2.01 1.96 1.97 0.42 0.12 0.22 0.23
0 5 100 125 2.22 2.01 2.01 1.49 0.39 0.12 0.12 2.51

0 5 200 50 2.18 2.00 2.00 2.00 0.26 0.09 0.10 0.10
0 5 200 150 2.17 2.00 2.00 2.00 0.28 0.09 0.09 0.09
0 5 200 250 2.17 2.00 - 1.82 0.27 0.09 - 0.94

0.5 5 100 25 2.32 2.23 2.17 2.19 0.49 0.27 0.30 0.31
0.5 5 100 75 2.28 2.23 2.34 2.35 0.41 0.27 0.38 0.39
0.5 5 100 125 2.27 2.23 2.23 1.53 0.41 0.27 0.27 1.27

0.5 5 200 50 2.23 2.21 2.76 2.79 0.32 0.23 0.78 0.82
0.5 5 200 150 2.21 2.21 2.33 2.34 0.29 0.23 0.35 0.35
0.5 5 200 250 2.21 2.21 - 1.81 0.29 0.23 - 0.78

0.9 5 100 25 2.27 2.23 2.23 1.53 0.41 0.27 0.27 1.27
0.9 5 100 75 2.34 2.39 2.50 2.51 0.47 0.42 0.53 0.54
0.9 5 100 125 2.32 2.39 2.39 1.53 0.45 0.42 0.42 1.26

0.9 5 200 50 2.25 2.37 2.90 2.93 0.33 0.38 0.92 0.96
0.9 5 200 150 2.23 2.37 2.83 2.53 0.31 0.38 0.45 0.48
0.9 5 200 250 2.23 2.37 - 1.80 0.31 0.38 - 0.79

Table 18: Simulations in Non-Linear Design & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.29 2.05 2.01 2.03 0.59 0.16 0.30 0.31
0 5 100 75 2.26 2.05 2.05 2.05 0.49 0.16 0.17 0.17
0 5 100 125 2.24 2.05 - 1.61 0.47 0.16 - 2.30

0 5 200 50 2.22 2.05 2.05 2.05 0.37 0.12 0.14 0.14
0 5 200 150 2.21 2.05 2.05 2.05 0.35 0.12 0.13 0.13
0 5 200 250 2.20 2.05 - 1.87 0.35 0.12 - 1.14

0 5 400 100 2.16 2.04 2.05 2.05 0.23 0.09 0.11 0.11
0 5 400 300 2.16 2.04 2.04 2.04 0.23 0.09 0.10 0.10
0 5 400 500 2.16 2.04 - 1.91 0.23 0.09 - 0.86

0.5 5 100 25 2.35 2.28 2.23 2.26 0.59 0.33 0.41 0.43
0.5 5 100 75 2.31 2.28 2.40 2.41 0.60 0.33 0.45 0.47
0.5 5 100 125 2.33 2.28 - 1.33 0.54 0.33 - 2.19

0.5 5 200 50 2.26 2.25 2.90 2.93 0.40 0.28 0.93 0.97
0.5 5 200 150 2.25 2.25 2.40 2.40 0.37 0.28 0.42 0.43
0.5 5 200 250 2.25 2.25 - 1.81 0.37 0.28 - 1.21

0.5 5 400 100 2.18 2.23 2.93 2.95 0.24 0.24 0.94 0.98
0.5 5 400 300 2.17 2.23 2.36 2.37 0.24 0.24 0.38 0.38
0.5 5 400 500 2.17 2.23 - 1.91 0.24 0.24 - 0.78

0.9 5 100 25 2.45 2.47 2.37 2.40 0.70 0.51 0.50 0.53
0.9 5 100 75 2.42 2.47 2.60 2.61 0.77 0.51 0.64 0.65
0.9 5 100 125 2.41 2.47 - 1.36 0.60 0.51 - 2.27

0.9 5 200 50 2.30 2.45 3.07 3.10 0.41 0.46 1.09 1.13
0.9 5 200 150 2.29 2.45 2.60 2.60 0.40 0.46 0.61 0.62
0.9 5 200 250 2.28 2.45 - 1.79 0.39 0.46 - 1.25

0.9 5 400 100 2.20 2.43 3.09 3.11 0.27 0.44 1.11 1.14
0.9 5 400 300 2.20 2.43 2.66 2.67 0.26 0.44 0.67 0.68
0.9 5 400 500 2.20 2.43 - 1.90 0.26 0.44 - 0.81

Table 19: Simulations in Non-Linear Design & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.23 2.01 1.96 1.97 0.43 0.11 0.23 0.23
0 5 100 75 2.20 2.01 2.01 2.01 0.37 0.11 0.12 0.12
0 5 100 125 2.20 2.01 - 1.74 0.37 0.11 - 1.20

0 5 200 50 2.18 2.00 2.00 2.00 0.26 0.09 0.10 0.10
0 5 200 150 2.17 2.00 2.00 2.00 0.28 0.09 0.09 0.09
0 5 200 250 2.17 2.00 - 1.82 0.27 0.09 - 0.94

0.5 5 100 25 2.34 2.28 2.21 2.23 0.49 0.31 0.31 0.33
0.5 5 100 75 2.32 2.28 2.40 2.41 0.45 0.31 0.42 0.43
0.5 5 100 125 2.31 2.28 2.28 1.68 0.43 0.31 0.31 1.73

0.5 5 200 50 2.23 2.21 2.76 2.80 0.32 0.23 0.78 0.82
0.5 5 200 150 2.21 2.21 2.33 2.34 0.29 0.23 0.35 0.35
0.5 5 200 250 2.21 2.21 - 1.81 0.29 0.23 - 0.78

0.9 5 100 25 2.42 2.46 2.33 2.35 0.56 0.48 0.40 0.42
0.9 5 100 75 2.40 2.46 2.58 2.59 0.57 0.48 0.60 0.60
0.9 5 100 125 2.39 2.46 2.46 1.65 0.54 0.48 0.48 1.95

0.9 5 200 50 2.25 2.37 2.90 2.92 0.33 0.38 0.92 0.96
0.9 5 200 150 2.24 2.37 2.49 2.50 0.32 0.38 0.50 0.51
0.9 5 200 250 2.23 2.37 - 1.80 0.31 0.38 - 0.79

Table 20: Simulations in Non-Linear Design & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.27 2.05 2.02 2.02 0.53 0.15 0.27 0.28
0 5 100 75 2.23 2.05 2.06 2.06 0.43 0.15 0.15 0.15
0 5 100 125 2.24 2.05 - 1.74 0.45 0.15 - 1.56

0 5 200 50 2.22 2.06 2.05 2.05 0.34 0.11 0.11 0.11
0 5 200 150 2.21 2.06 2.06 2.06 0.32 0.11 0.11 0.11
0 5 200 250 2.21 2.06 - 1.94 0.32 0.11 - 0.88

0 5 400 100 2.17 2.05 2.05 2.05 0.23 0.09 0.09 0.10
0 5 400 300 2.17 2.05 2.05 2.05 0.23 0.09 0.09 0.09
0 5 400 500 2.17 2.05 - 1.97 0.22 0.09 - 0.59

0.5 5 100 25 2.38 2.32 2.28 2.30 0.56 0.36 0.41 0.43
0.5 5 100 75 2.37 2.32 2.47 2.49 0.54 0.36 0.51 0.52
0.5 5 100 125 2.36 2.32 - 1.69 0.53 0.36 - 1.58

0.5 5 200 50 2.28 2.28 2.98 2.98 0.37 0.30 0.99 1.01
0.5 5 200 150 2.26 2.28 2.47 2.47 0.34 0.30 0.48 0.48
0.5 5 200 250 2.25 2.28 - 1.90 0.33 0.30 - 0.92

0.5 5 400 100 2.20 2.26 2.99 3.01 0.26 0.27 1.00 1.02
0.5 5 400 300 2.19 2.26 2.41 2.42 0.24 0.27 0.42 0.43
0.5 5 400 500 2.19 2.26 - 1.96 0.24 0.27 - 0.59

0.9 5 100 25 2.48 2.55 2.43 2.45 0.64 0.57 0.52 0.54
0.9 5 100 75 2.46 2.55 2.69 2.70 0.64 0.57 0.71 0.73
0.9 5 100 125 2.45 2.55 - 1.64 0.60 0.57 - 1.68

0.9 5 200 50 2.34 2.52 3.15 3.12 0.41 0.52 1.15 1.17
0.9 5 200 150 2.31 2.52 2.68 2.69 0.37 0.52 0.69 0.69
0.9 5 200 250 2.30 2.52 - 1.86 0.37 0.52 - 0.92

0.9 5 400 100 2.23 2.50 3.16 3.16 0.28 0.50 1.16 1.18
0.9 5 400 300 2.23 2.50 2.80 3.16 0.27 0.50 0.70 0.78
0.9 5 400 500 2.22 2.50 - 1.93 0.26 0.50 - 0.59

Table 21: Simulations in Non-Linear Design & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 100 25 2.07 2.01 1.96 1.97 0.33 0.10 0.19 0.20
0 8 100 75 2.05 2.01 2.01 2.01 0.24 0.10 0.11 0.11
0 8 100 125 2.04 2.01 - 1.84 0.23 0.10 - 0.48

0 8 200 50 2.02 2.01 2.00 2.00 0.17 0.07 0.08 0.08
0 8 200 150 2.02 2.01 2.00 2.00 0.16 0.07 0.07 0.07
0 8 200 250 2.03 2.01 - 1.93 0.16 0.07 - 0.33

0.5 8 100 25 2.14 2.33 2.18 2.20 0.39 0.36 0.27 0.30
0.5 8 100 75 2.15 2.33 2.44 2.45 0.31 0.36 0.46 0.47
0.5 8 100 125 2.14 2.33 - 1.78 0.29 0.36 - 0.50

0.5 8 200 50 2.11 2.30 2.71 2.74 0.22 0.31 0.71 0.74
0.5 8 200 150 2.06 2.30 2.43 2.43 0.19 0.31 0.43 0.44
0.5 8 200 250 2.06 2.30 - 1.92 0.18 0.31 - 0.32

0.9 8 100 25 2.21 2.56 2.30 2.32 0.44 0.57 0.36 0.38
0.9 8 100 75 2.21 2.56 2.64 2.65 0.34 0.57 0.65 0.66
0.9 8 100 125 2.21 2.56 - 1.77 0.34 0.57 - 0.53

0.9 8 200 50 2.14 2.53 2.83 2.86 0.24 0.53 0.84 0.87
0.9 8 200 150 2.10 2.53 2.63 2.63 0.21 0.53 0.63 0.63
0.9 8 200 250 2.09 2.53 - 1.91 0.20 0.53 - 0.33

Table 22: Simulations in Linear Design & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 100 25 2.28 2.01 1.96 1.96 0.70 0.12 0.23 0.23
0 8 100 75 2.21 2.01 2.01 2.01 0.39 0.12 0.13 0.13
0 8 100 125 2.20 2.01 - 1.51 0.42 0.12 - 1.41

0 8 200 50 2.18 2.00 2.00 2.00 0.30 0.09 0.10 0.11
0 8 200 150 2.17 2.00 2.00 2.00 0.28 0.09 0.09 0.09
0 8 200 250 2.16 2.00 - 1.79 0.26 0.09 - 1.86

0.5 8 100 25 2.44 2.23 2.18 2.19 0.77 0.27 0.30 0.31
0.5 8 100 75 2.33 2.23 2.34 2.35 0.49 0.27 0.38 0.38
0.5 8 100 125 2.30 2.23 - 1.44 0.48 0.27 - 1.53

0.5 8 200 50 2.27 2.21 2.74 2.77 0.37 0.23 0.76 0.79
0.5 8 200 150 2.23 2.21 2.33 2.33 0.31 0.23 0.35 0.35
0.5 8 200 250 2.22 2.21 - 1.69 0.31 0.23 - 1.42

0.9 8 100 25 2.51 2.39 2.28 2.30 0.77 0.42 0.37 0.39
0.9 8 100 75 2.39 2.39 2.50 2.51 0.54 0.42 0.52 0.53
0.9 8 100 125 2.32 2.39 - 1.53 0.45 0.42 - 1.26

0.9 8 200 50 2.32 2.37 2.88 2.91 0.42 0.38 0.90 0.93
0.9 8 200 150 2.27 2.37 2.49 2.49 0.35 0.38 0.50 0.50
0.9 8 200 250 2.23 2.37 - 1.80 0.31 0.38 - 0.79

Table 23: Simulations in Non-Linear Design & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 200 50 2.05 2.06 2.05 2.04 0.26 0.11 0.11 0.11
0 8 200 150 2.06 2.06 2.06 2.06 0.26 0.11 0.11 0.11
0 8 200 250 2.06 2.06 - 1.94 0.26 0.11 - 0.53

0 8 400 50 2.03 2.05 2.03 2.03 0.18 0.09 0.09 0.09
0 8 400 150 2.03 2.05 2.04 2.05 0.18 0.09 0.09 0.09
0 8 400 250 2.03 2.05 2.05 2.05 0.18 0.09 0.09 0.09

0 8 400 100 2.03 2.05 2.04 2.04 0.18 0.09 0.09 0.09
0 8 400 300 2.03 2.05 2.05 2.05 0.18 0.09 0.09 0.10
0 8 400 500 2.03 2.05 - 1.96 0.18 0.09 - 0.36

0.5 8 200 50 2.14 2.33 2.84 2.87 0.31 0.35 0.85 0.89
0.5 8 200 150 2.11 2.33 2.49 2.50 0.28 0.35 0.51 0.51
0.5 8 200 250 2.10 2.33 - 1.90 0.27 0.35 - 0.51

0.5 8 400 50 2.09 2.31 2.95 2.96 0.23 0.32 0.96 1.00
0.5 8 400 150 2.05 2.31 2.75 2.76 0.20 0.32 0.76 0.77
0.5 8 400 250 2.05 2.31 2.49 2.57 0.19 0.32 0.52 0.49

0.5 8 400 100 2.06 2.31 2.87 2.89 0.20 0.32 0.87 0.90
0.5 8 400 300 2.05 2.31 2.45 2.46 0.19 0.32 0.46 0.47
0.5 8 400 500 2.05 2.31 - 1.97 0.19 0.32 - 0.36

0.9 8 200 50 2.21 2.61 2.99 3.03 0.35 0.62 1.00 1.04
0.9 8 200 150 2.17 2.61 2.74 2.74 0.32 0.62 0.75 0.75
0.9 8 200 250 2.16 2.61 - 1.88 0.31 0.62 - 0.53

0.9 8 400 50 2.13 2.59 3.06 3.05 0.24 0.59 1.07 1.10
0.9 8 400 150 2.08 2.59 2.78 2.79 0.21 0.59 0.78 0.79
0.9 8 400 250 2.08 2.59 - 2.79 0.21 0.59 - 0.57

0.9 8 400 100 2.10 2.59 3.01 3.02 0.22 0.59 1.02 1.04
0.9 8 400 300 2.08 2.59 2.70 2.71 0.21 0.59 0.71 0.71
0.9 8 400 500 2.08 2.59 - 1.96 0.21 0.59 - 0.36

Table 24: Simulations in Linear Design & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 200 50 2.21 2.05 2.05 2.05 0.35 0.12 0.14 0.14
0 8 200 150 2.21 2.05 2.05 2.05 0.35 0.12 0.13 0.13
0 8 200 250 2.21 2.05 - 1.72 0.37 0.12 - 2.11

0 8 400 50 2.18 2.04 2.04 2.04 0.25 0.09 0.11 0.11
0 8 400 150 2.17 2.04 2.04 2.04 0.24 0.09 0.11 0.11
0 8 400 250 2.17 2.04 2.04 2.04 0.24 0.09 0.10 0.10

0 8 400 100 2.18 2.04 2.05 2.05 0.24 0.09 0.11 0.11
0 8 400 300 2.17 2.04 2.04 2.04 0.24 0.09 0.10 0.10
0 8 400 500 2.17 2.04 - 1.83 0.24 0.09 - 1.20

0.5 8 200 50 2.32 2.25 2.87 2.90 0.50 0.28 0.90 0.93
0.5 8 200 150 2.26 2.25 2.39 2.40 0.41 0.28 0.42 0.42
0.5 8 200 250 2.25 2.25 - 1.76 0.40 0.28 - 1.69

0.5 8 400 50 2.24 2.23 3.11 3.14 0.32 0.24 1.13 1.18
0.5 8 400 150 2.20 2.23 2.72 2.73 0.27 0.24 0.74 0.75
0.5 8 400 250 2.19 2.23 2.30 2.47 0.27 0.24 0.28 0.48

0.5 8 400 100 2.21 2.23 2.91 2.93 0.28 0.24 0.92 0.95
0.5 8 400 300 2.19 2.23 2.36 2.36 0.27 0.24 0.37 0.38
0.5 8 400 500 2.19 2.23 - 1.90 0.26 0.24 - 1.10

0.9 8 200 50 2.38 2.45 3.05 3.08 0.52 0.46 1.07 1.10
0.9 8 200 150 2.32 2.45 2.59 2.59 0.44 0.46 0.61 0.61
0.9 8 200 250 2.31 2.45 2.45 1.71 0.43 0.46 0.46 1.62

0.9 8 400 50 2.28 2.43 3.26 3.27 0.34 0.44 1.27 1.32
0.9 8 400 150 2.24 2.43 3.01 2.92 0.30 0.44 1.01 0.97
0.9 8 400 250 2.23 2.43 2.66 2.39 0.29 0.44 - 0.67

0.9 8 400 100 2.24 2.43 3.08 3.10 0.31 0.44 1.09 1.12
0.9 8 400 300 2.23 2.43 2.66 2.38 0.29 0.44 0.78 0.67
0.9 8 400 500 2.22 2.43 - 1.87 0.28 0.44 - 1.14

Table 25: Simulations in Non-Linear Design & AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 100 25 2.10 2.01 1.95 1.96 0.36 0.10 0.20 0.21
0 8 100 75 2.05 2.01 2.01 2.01 0.27 0.10 0.10 0.10
0 8 100 125 2.04 2.01 - 1.91 0.26 0.10 - 0.51

0.5 8 100 25 2.17 2.35 2.22 2.24 0.41 0.37 0.31 0.32
0.5 8 100 75 2.21 2.35 2.47 2.47 0.34 0.37 0.48 0.49
0.5 8 100 125 2.19 2.35 - 1.87 0.33 0.37 - 0.52

0.9 8 100 25 2.26 2.59 2.35 2.37 0.48 0.60 0.40 0.43
0.9 8 100 75 2.29 2.59 2.68 2.68 0.42 0.60 0.69 0.70
0.9 8 100 125 2.28 2.59 - 1.85 0.39 0.60 - 0.55

Table 26: Simulations in Linear Design & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 100 25 2.28 2.01 1.96 1.96 0.57 0.11 0.22 0.22
0 8 100 75 2.19 2.01 2.01 2.01 0.41 0.11 0.12 0.12
0 8 100 125 2.17 2.01 - 1.84 0.36 0.11 - 3.12

0.5 8 100 25 2.46 2.28 2.23 2.23 0.67 0.31 0.32 0.33
0.5 8 100 75 2.38 2.28 2.39 2.40 0.53 0.31 0.42 0.43
0.5 8 100 125 2.36 2.28 - 1.63 0.50 0.31 - 2.92

0.9 8 100 25 2.54 2.46 2.35 2.36 0.77 0.48 0.42 0.43
0.9 8 100 75 2.46 2.46 2.57 2.58 0.57 0.48 0.59 0.60
0.9 8 100 125 2.40 2.46 - 1.63 0.52 0.48 - 1.73

Table 27: Simulations in Non-Linear Design & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 400 100 2.03 2.06 2.04 2.05 0.17 0.09 0.08 0.08
0 8 400 300 2.03 2.06 2.06 2.06 0.17 0.09 0.09 0.09
0 8 400 500 2.03 2.06 - 1.99 0.17 0.09 - 0.30

0.5 8 400 100 2.07 2.32 2.94 2.95 0.20 0.33 0.95 0.97
0.5 8 400 300 2.05 2.32 2.48 2.49 0.18 0.33 0.49 0.50
0.5 8 400 500 2.05 2.32 - 1.99 0.18 0.33 - 0.31

0.9 8 400 100 2.10 2.62 3.09 3.10 0.21 0.62 1.09 1.11
0.9 8 400 300 2.08 2.62 2.74 2.75 0.19 0.62 0.75 0.75
0.9 8 400 500 2.08 2.62 - 1.98 0.19 0.62 - 0.31

Table 28: Simulations in Linear Design & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 8 400 100 2.18 2.05 2.05 2.05 0.24 0.09 0.09 0.09
0 8 400 300 2.17 2.05 2.05 2.05 0.23 0.09 0.09 0.09
0 8 400 500 2.17 2.05 - 1.93 0.23 0.09 - 0.81

0.5 8 400 100 2.23 2.26 2.98 2.99 0.29 0.27 0.99 1.01
0.5 8 400 300 2.21 2.26 2.41 2.42 0.27 0.27 0.42 0.43
0.5 8 400 500 2.20 2.26 - 1.94 0.26 0.27 - 0.76

0.9 8 400 100 2.27 2.50 3.15 3.15 0.32 0.50 1.15 1.17
0.9 8 400 300 2.25 2.50 2.61 2.52 0.30 0.50 0.71 0.89
0.9 8 400 500 2.24 2.50 - 1.91 0.29 0.50 - 0.78

Table 29: Simulations in Non-Linear Design & AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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B.3 PIR Simulations

Parametric Inverse Regression (PIR) is a supervised method of finding sufficient directions

needed for the conditional mean. This method was developed by Bura & Cook (2001). In this

section, we show the performance of our SIF method if we replace the sliced inverse regression

(SIR) in the SDR direction estimation step by PIR.

E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 5 100 25 2.06 2.01 1.95 1.96 0.28 0.10 0.20 0.21
0 5 100 75 2.05 2.01 2.01 2.01 0.28 0.10 0.10 0.10
0 5 100 125 2.05 2.01 - 1.95 0.27 0.10 - 0.39

0 5 200 50 2.04 2.01 2.00 2.00 0.18 0.07 0.07 0.07
0 5 200 150 2.04 2.01 2.00 2.00 0.18 0.07 0.07 0.07
0 5 200 250 2.04 2.01 - 1.98 0.18 0.07 - 0.25

0.5 5 100 25 2.13 2.35 2.21 2.24 0.33 0.37 0.30 0.32
0.5 5 100 75 2.15 2.35 2.47 2.48 0.31 0.37 0.49 0.50
0.5 5 100 125 2.14 2.35 - 1.91 0.29 0.37 - 0.44

0.5 5 200 50 2.10 2.32 2.77 2.79 0.22 0.33 0.78 0.80
0.5 5 200 150 2.08 2.32 2.46 2.46 0.20 0.33 0.46 0.46
0.5 5 200 250 2.08 2.32 - 1.97 0.20 0.33 - 0.26

0.9 5 100 25 2.19 2.59 2.33 2.36 0.36 0.60 0.39 0.42
0.9 5 100 75 2.21 2.59 2.68 2.69 0.35 0.60 0.69 0.70
0.9 5 100 125 2.20 2.59 - 1.89 0.33 0.60 - 0.49

0.9 5 200 50 2.14 2.56 2.90 2.92 0.25 0.56 0.91 0.93
0.9 5 200 150 2.11 2.56 2.67 2.67 0.22 0.56 0.67 0.67
0.9 5 200 250 2.10 2.56 - 1.96 0.21 0.56 - 0.27

Table 30: PIR Simulations in Design-I (4.1) & Non-AR Errors (γ = 0, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]

We observe similar patterns of SIF’s performance as of the main text. This verifies that the use

of the SIR method as the SDR direction estimator is a good choice.
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.27 2.39 2.27 2.30 0.37 0.42 0.36 0.40
0 3 100 75 2.26 2.39 2.51 2.52 0.36 0.42 0.53 0.54
0 3 100 125 2.26 2.39 - 1.67 0.35 0.42 - 1.35

0 3 200 50 2.02 2.01 2.00 2.00 0.16 0.07 0.07 0.07
0 3 200 150 2.02 2.01 2.00 2.00 0.16 0.07 0.07 0.07
0 3 200 250 2.02 2.01 - 1.97 0.16 0.07 - 0.18

0.5 3 100 25 2.07 2.33 2.17 2.22 0.25 0.36 0.26 0.31
0.5 3 100 75 2.08 2.33 2.45 2.46 0.26 0.36 0.47 0.48
0.5 3 100 125 2.07 2.33 - 1.92 0.25 0.36 - 0.27

0.5 3 200 50 2.04 2.30 2.72 2.77 0.18 0.31 0.73 0.79
0.5 3 200 150 2.04 2.30 2.43 2.43 0.19 0.31 0.44 0.44
0.5 3 200 250 2.04 2.30 - 1.96 0.19 0.31 - 0.19

0.9 3 100 25 2.10 2.56 2.28 2.34 0.28 0.57 0.33 0.41
0.9 3 100 75 2.11 2.56 2.65 2.66 0.28 0.57 0.66 0.67
0.9 3 100 125 2.10 2.56 - 1.92 0.28 0.57 - 0.27

0.9 3 200 50 2.06 2.53 2.85 2.84 0.19 0.53 0.85 0.91
0.9 3 200 150 2.06 2.53 2.63 2.64 0.20 0.53 0.64 0.64
0.9 3 200 250 2.06 2.53 - 1.96 0.20 0.53 - 0.19

Table 31: PIR Simulations in Design-II (4.2) with Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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E(β̂1) RMSE(β̂1)
ρ r T N SIF OLS 2SLS FIV SIF OLS 2SLS FIV

0 3 100 25 2.19 2.01 1.96 1.96 0.30 0.12 0.22 0.23
0 3 100 75 2.18 2.01 2.01 2.01 0.30 0.12 0.13 0.13
0 3 100 125 2.18 2.01 - 1.79 0.29 0.12 - 0.98

0 3 200 50 2.14 2.00 2.00 2.00 0.21 0.09 0.10 0.10
0 3 200 150 2.13 2.00 2.00 2.00 0.20 0.09 0.09 0.09
0 3 200 250 2.13 2.00 - 1.86 0.20 0.09 - 0.60

0.5 3 100 25 2.23 2.23 2.17 2.20 0.33 0.27 0.29 0.32
0.5 3 100 75 2.22 2.23 2.35 2.36 0.32 0.27 0.38 0.39
0.5 3 100 125 2.21 2.23 - 1.69 0.31 0.27 - 1.30

0.5 3 200 50 2.18 2.21 2.77 2.80 0.24 0.23 0.79 0.84
0.5 3 200 150 2.17 2.21 2.33 2.34 0.23 0.23 0.35 0.35
0.5 3 200 250 2.17 2.21 - 1.86 0.24 0.23 - 0.62

0.9 3 100 25 2.27 2.39 2.27 2.30 0.37 0.42 0.36 0.40
0.9 3 100 75 2.26 2.39 2.51 2.52 0.36 0.42 0.53 0.54
0.9 3 100 125 2.26 2.39 - 1.67 0.35 0.42 - 1.35

0.9 3 200 50 2.20 2.37 2.92 2.95 0.26 0.38 0.93 0.99
0.9 3 200 150 2.19 2.37 2.49 2.50 0.25 0.38 0.51 0.51
0.9 3 200 250 2.19 2.37 - 1.85 0.25 0.38 - 0.63

Table 32: PIR Simulations in Design-III (4.3) & Non-AR Errors (γ = 0.5, 500 Reps)
[Notes: True value of β1 is 2. We cannot estimate 2SLS when N > T .]
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B.4 Performance of Belloni et al. (2012) When Many Instruments are Cor-

related

Belloni et al. (2012)’s Post Lasso IV (PLIV) is a sparsity-based procedure that efficiently esti-

mates the first stage of instrumental variable regression by selecting the important instruments

from a pool of available ones. However, when the true instrument set is not sparse, that is

if the instrument set is correlated, this method should not work well. We verify this idea in

this section. Table-33 shows the performance of the OLS method and PLIV method of Belloni

et al. (2012). The true value of the parameter of interest β1 is 2. In the table-33, we report

the actual estimate and the root mean squared error using 500 repetitions of simulation using

Design-II (4.2). We choose Design-II so that one can’t say that Belloni et al. (2012)’s method

may not be doing well because of non-linearities or the need for supervision. We also show that

in Design-III as well, Belloni et al. (2012)’s method does not do well. The aim of this section is

that when the underlying structure of many instruments is not sparse, we need another method,

therefore, this paper is an important contribution.
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E(β̂1) RMSE(β̂1)
Simulation Design ρ T N OLS PLIV OLS PLIV

Design-II (4.2) 0 200 50 2.06 2.05 0.11 0.11
Design-II (4.2) 0 200 150 2.06 2.05 0.11 0.11
Design-II (4.2) 0 200 250 2.06 2.05 0.11 0.11

Design-II (4.2) 0.5 200 50 2.33 2.93 0.35 0.94
Design-II (4.2) 0.5 200 150 2.33 2.82 0.35 0.83
Design-II (4.2) 0.5 200 250 2.33 2.73 0.35 0.75

Design-II (4.2) 0.9 200 50 2.61 3.05 0.62 1.06
Design-II (4.2) 0.9 200 150 2.61 2.96 0.62 0.97
Design-II (4.2) 0.9 200 250 2.61 2.92 0.62 0.93

Design-III (4.3) 0 200 50 2.05 2.06 0.12 0.14
Design-III (4.3) 0 200 150 2.05 2.07 0.12 0.14
Design-III (4.3) 0 200 250 2.05 2.06 0.12 0.13

Design-III (4.3) 0.5 200 50 2.25 3.07 0.28 1.10
Design-III (4.3) 0.5 200 150 2.25 2.92 0.28 0.96
Design-III (4.3) 0.5 200 250 2.25 2.82 0.28 0.87

Design-III (4.3) 0.9 200 50 2.45 3.21 0.46 1.24
Design-III (4.3) 0.9 200 150 2.45 3.07 0.46 1.10
Design-III (4.3) 0.9 200 250 2.45 2.98 0.46 1.02

Table 33: Expected value and RMSE of estimates of OLS and PLIV method of Belloni et al.
(2012)
[Notes: True value of β1 is 2. ρ represents extent of endogeneity, ρ = 0 means no-endogenity. Errors
and factors are AR(1) with AR(1) coefficient being 0.5. Other Parameters: r = 3, number of
replication =500]
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