KERNEL THREE PASS REGRESSION FILTER

Rajveer Jat and Daanish Padha

University of California, Riverside

Introduction

We propose a novel supervised and non-linear method of forecasting a single time series using a high-dimensional set of predictors extending [1]. The method is computationally efficient and demonstrates strong empirical performance, particularly over longer forecast horizons.

Model

Notations: \boldsymbol{y} is target variable, \boldsymbol{X} is predictor matrix, \boldsymbol{Z} is the matrix of proxies for \boldsymbol{y} . \boldsymbol{F} is matrix of factors, $\mathcal{K}(\cdot,\cdot)$ is a kernel function. $\boldsymbol{J}_T \equiv \boldsymbol{I}_T - \frac{1}{T} \iota_T \iota_T'$ is the demeaning matrix, where \boldsymbol{I}_T is the T-dimensional identity matrix and ι_T the T-vector of ones.

Data Transformation Let $\varphi: X \to \mathcal{F}$ denote a transformation of the original data into a higher-dimensional space (Hilbert space) containing the original set of predictors and their non-linear transformations. \mathcal{F} is M dimensional space and X is N dimensional input, M >> N. Number of sample size is T.

The Procedure

	aa. o
Pass	Description
1.	Run time series regression of $\varphi_j(\mathbf{x})$ on \boldsymbol{Z} for $j=1,\ldots,M$,
	$arphi_j(m{x}_t) = ilde{\phi}_{0,j} + m{z}_t' ilde{m{\phi}}_j + \hat{v}_{1jt}$, retain slope estimate $ ilde{m{\phi}}_j$.
2.	Run cross-section regression of $\varphi(\boldsymbol{x}_t)$ on $\tilde{\boldsymbol{\phi}}$ for $t=1,\ldots,T$,
	$arphi_j(m{x}_t) = ilde{m{\phi}}_j' \hat{m{F}}_t + \hat{v}_{2jt}$, retain slope estimate $\hat{m{F}}_t$.
3.	Run time series regression of y_{t+h} on predictive factors $\hat{m{F}}_t$,
	$\hat{y}_{t+h} = \hat{eta}_0 + \hat{m{F}}'\hat{m{eta}}$, delivers the forecast.

Architecture

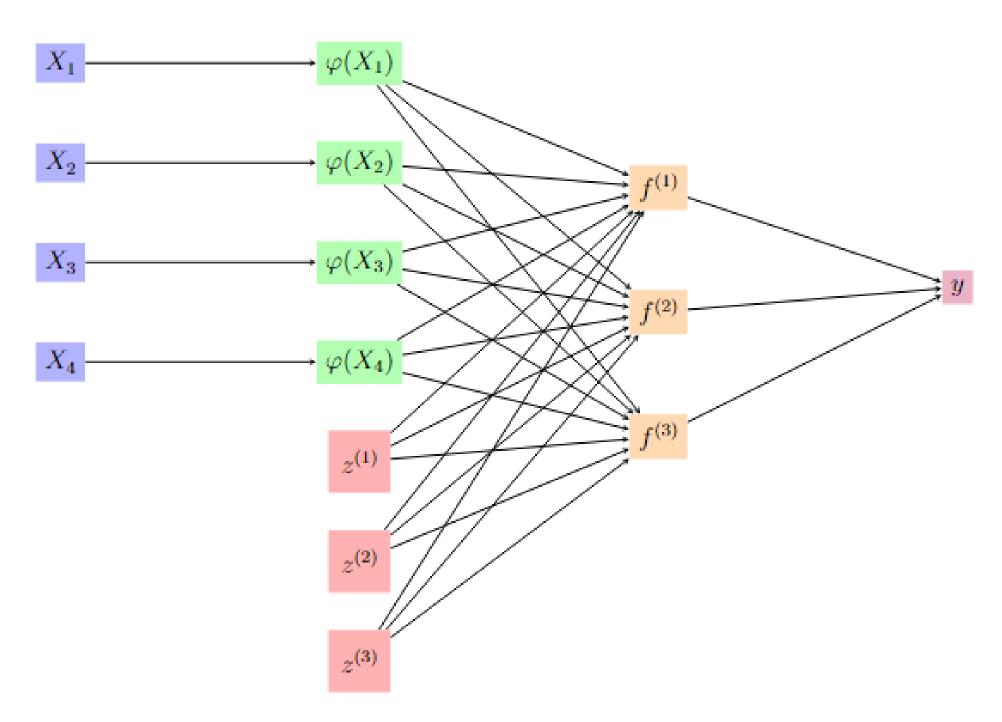


Fig. 1: Kernel 3PRF with T=4 and L=3 relevant factors

Closed Form Expression of Forecast

$$\widehat{\boldsymbol{y}} = \iota \bar{\boldsymbol{y}} + \boldsymbol{J}_T \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}') \boldsymbol{J}_T \boldsymbol{Z} \left(\boldsymbol{Z}' \boldsymbol{J}_T \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}') \boldsymbol{J}_T \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}') \boldsymbol{J}_T \boldsymbol{Z} \right)^{-1} \boldsymbol{Z}' \boldsymbol{J}_T \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}') \boldsymbol{J}_T \boldsymbol{y}$$

Convergence Rate: Under Assumptions (given in the paper, almost same as [1]), we have:

$$\hat{y}_{t+h} - \mathbb{E}_t y_{t+h} = O_p(\min\{M, T\})$$

Short-Horizon Out of Sample (OOS) Forecasting

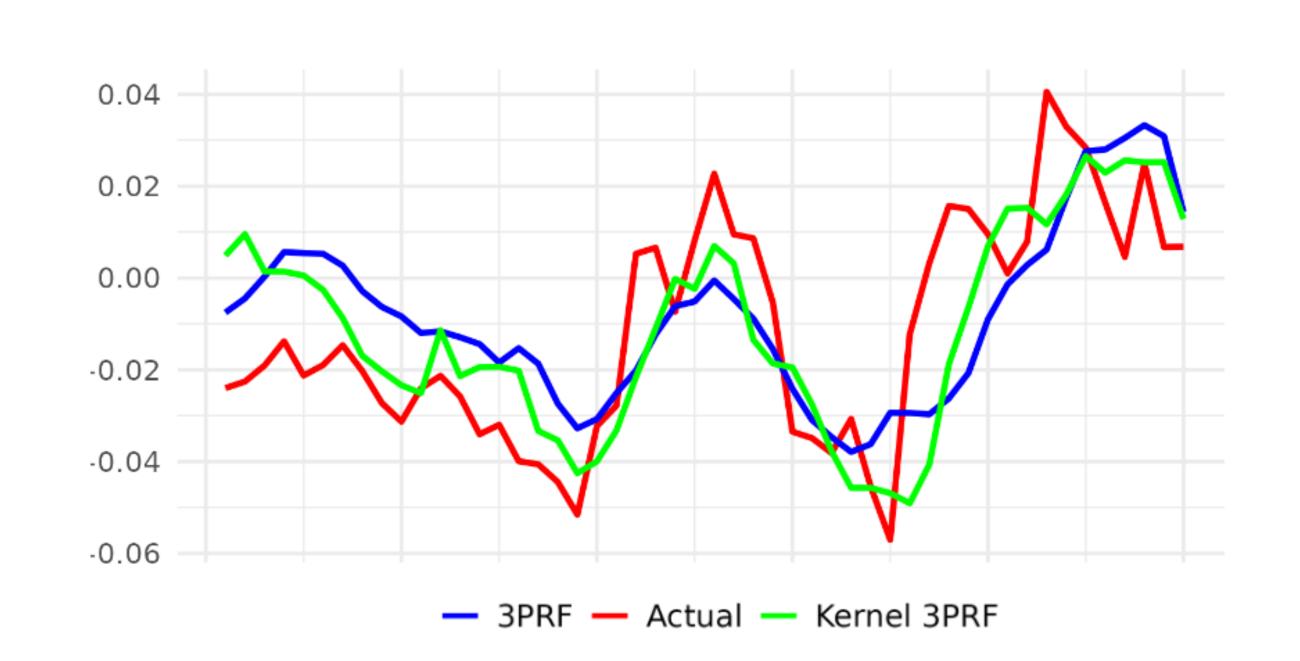


Fig. 2: One-step Ahead Forecast for GDP Deflator

Long-Horizon OOS Forecasting

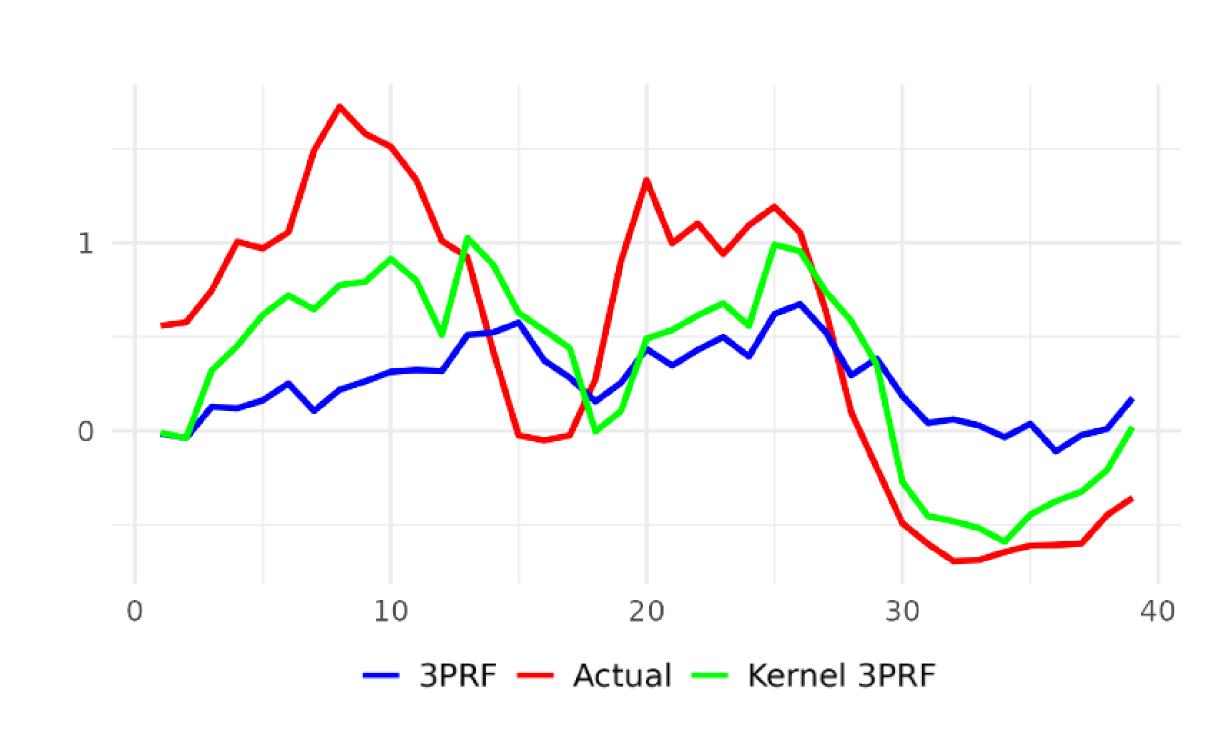


Fig. 3: 12-step Ahead Forecast for S&P500 Index

All-Horizon OOS Forecasting

[PC: Principal Component, Reg: Regression, Sq-PC: square input data then take its PCs. PC-Sq: square of PCs, kPCA: Kernel PCA, 3PRF: [1]'s method, k3PRF: our method]

Consumer Price Index (CPI) : h -period ahead Out of Sample \mathbb{R}^2											
Method	h=1	h=2	h=4	h=6	h=8	h=10	h=12				
AR	0.704	0.706	0.565	0.397	0.211	0.062	-0.038				
PC	0.660	0.535	0.154	-0.163	-0.252	-0.248	-0.173				
Sq-PC	0.410	0.296	0.049	-0.055	-0.156	-0.200	-0.173				
PC-Sq	0.649	0.512	0.186	-0.019	-0.087	-0.187	-0.228				
kPCA	0.440	0.380	0.189	-0.043	-0.024	0.042	-0.006				
3PRF	0.641	0.566	0.352	0.192	0.241	0.255	0.141				
k3PRF	0.676	0.612	0.463	0.469	0.434	0.349	0.477				

Best Forecasting Methods on 176 US Series

Analysis: Comparative performance of models across a total of $176 \times 8 = 1408$ target-horizon combinations on 176 US time series in our FRED-QD data complied by McCracken & Ng. Our sample runs from 1964 to 2007.

Best Method Definition:A method is considered 'best' under tolerance level ε if its out-of-sample R^2 is within ε percentage of the top method's R^2 . For non-zero tolerance, multiple methods can be tagged as 'best'.

Distribution of Best Forecasting Methods Across All Series (Percentage)										
Analysis	Tolerance(%)	%) Methods								
		AR(2)	PC	Sq-PC	PC-Sq	kPCA	3PRF	k3PRF		
All Horizons										
	0	48.22	0.21	0.85	1.42	2.98	6.47	39.56		
	5	50.07	1.14	1.35	1.99	3.34	9.16	43.54		
	10	52.41	2.27	2.13	3.34	4.26	13.07	48.37		
	20	55.68	5.68	3.69	7.74	6.75	23.30	62.57		
Short-horizon										
	0	84.09	0.14	0.43	0.57	0.43	1.70	12.64		
	5	87.07	1.42	0.71	1.56	0.57	5.11	18.75		
	10	90.77	3.27	1.70	3.84	1.28	9.23	26.14		
	20	94.32	8.38	3.41	10.37	3.55	20.03	48.72		
Long-horizon										
	0	12.36	0.28	1.28	2.27	5.54	11.79	66.48		
	5	13.07	0.85	1.99	2.41	6.11	13.21	68.32		
	10	14.06	1.28	2.56	2.84	7.24	16.90	70.60		
	20	17.05	2.98	3.98	5.11	9.94	26.56	76.42		
Excluding AR										
	0	-	1.42	1.56	2.84	5.47	13.00	75.71		
	5	-	2.84	2.06	4.76	5.75	17.97	78.76		
	10	_	5.26	3.27	7.74	7.03	25.99	81.53		
	20	_	11.08	5.89	14.35	11.43	41.34	86.08		

Conclusion

We demonstrate that this approach is a reliable forecasting tool, with its improved performance stemming from two key features: capturing non-linear relationships by transforming input data into a higher-dimensional space and operating as a supervised method, filtering out irrelevant factors.

Miscellaneous

We use the rolling window method to compute OOS \mathbb{R}^2 and cross-validation to select tuning parameters.

References

[1] Bryan Kelly and Seth Pruitt. "The three-pass regression filter: A new approach to forecasting using many predictors". In: *Journal of Econometrics* 186.2 (2015), pp. 294–316.