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Introduction

We propose a novel supervised and non-linear method of forecasting a single
time series using a high-dimensional set of predictors extending [1]. The method
is computationally efficient and demonstrates strong empirical performance, par-
ticularly over longer forecast horizons.

Model

Notations: y is target variable, X is predictor matrix, Z is the matrix of proxies
for y. F is matrix of factors, K(·, ·) is a kernel function. JT ≡ IT − 1

T ιT ι
′
T is

the demeaning matrix, where IT is the T -dimensional identity matrix and ιT the
T -vector of ones.

Data Transformation Let φ : X → F denote a transformation of the original
data into a higher-dimensional space (Hilbert space) containing the original set
of predictors and their non-linear transformations. F is M dimensional space and
X is N dimensional input, M >> N . Number of sample size is T.

The Procedure
Pass Description
1. Run time series regression of φj(x) on Z for j = 1, . . . ,M ,

φj(xt) = ϕ̃0,j + z′tϕ̃j + v̂1jt, retain slope estimate ϕ̃j.
2. Run cross-section regression of φ(xt) on ϕ̃ for t = 1, . . . , T ,

φj(xt) = ϕ̃
′
jF̂ t + v̂2jt, retain slope estimate F̂ t.

3. Run time series regression of yt+h on predictive factors F̂ t,
ŷt+h = β̂0 + F̂

′
β̂, delivers the forecast.

Architecture

Fig. 1: Kernel 3PRF with T=4 and L=3 relevant factors

Closed Form Expression of Forecast

ŷ = ιȳ+JTK(X,X ′)JTZ
(
Z ′JTK(X,X ′)JTK(X,X ′)JTZ

)−1
Z ′JTK(X,X ′)JTy

Convergence Rate: Under Assumptions (given in the paper, almost same as [1]),
we have:

ŷt+h − Etyt+h = Op(min{M,T})

Short-Horizon Out of Sample (OOS) Forecasting

Fig. 2: One-step Ahead Forecast for GDP Deflator

Long-Horizon OOS Forecasting

Fig. 3: 12-step Ahead Forecast for S&P500 Index

All-Horizon OOS Forecasting

[PC: Principal Component, Reg: Regression, Sq-PC: square input data then take its PCs.
PC-Sq: square of PCs, kPCA: Kernel PCA, 3PRF: [1]’s method, k3PRF: our method ]

Consumer Price Index (CPI) : h-period ahead Out of Sample R2

Method h=1 h=2 h=4 h=6 h=8 h=10 h=12
AR 0.704 0.706 0.565 0.397 0.211 0.062 -0.038
PC 0.660 0.535 0.154 -0.163 -0.252 -0.248 -0.173
Sq-PC 0.410 0.296 0.049 -0.055 -0.156 -0.200 -0.173
PC-Sq 0.649 0.512 0.186 -0.019 -0.087 -0.187 -0.228
kPCA 0.440 0.380 0.189 -0.043 -0.024 0.042 -0.006
3PRF 0.641 0.566 0.352 0.192 0.241 0.255 0.141
k3PRF 0.676 0.612 0.463 0.469 0.434 0.349 0.477

Best Forecasting Methods on 176 US Series

Analysis: Comparative performance of models across a total of 176× 8 = 1408
target-horizon combinations on 176 US time series in our FRED-QD data com-
plied by McCracken & Ng. Our sample runs from 1964 to 2007.

Best Method Definition:A method is considered ‘best’ under tolerance level ε if
its out-of-sample R2 is within ε percentage of the top method’s R2. For non-zero
tolerance, multiple methods can be tagged as ‘best’.

Distribution of Best Forecasting Methods Across All Series (Percentage)
Analysis Tolerance(%) Methods

AR(2) PC Sq-PC PC-Sq kPCA 3PRF k3PRF
All Horizons

0 48.22 0.21 0.85 1.42 2.98 6.47 39.56
5 50.07 1.14 1.35 1.99 3.34 9.16 43.54
10 52.41 2.27 2.13 3.34 4.26 13.07 48.37
20 55.68 5.68 3.69 7.74 6.75 23.30 62.57

Short-horizon
0 84.09 0.14 0.43 0.57 0.43 1.70 12.64
5 87.07 1.42 0.71 1.56 0.57 5.11 18.75
10 90.77 3.27 1.70 3.84 1.28 9.23 26.14
20 94.32 8.38 3.41 10.37 3.55 20.03 48.72

Long-horizon
0 12.36 0.28 1.28 2.27 5.54 11.79 66.48
5 13.07 0.85 1.99 2.41 6.11 13.21 68.32
10 14.06 1.28 2.56 2.84 7.24 16.90 70.60
20 17.05 2.98 3.98 5.11 9.94 26.56 76.42

Excluding AR
0 - 1.42 1.56 2.84 5.47 13.00 75.71
5 - 2.84 2.06 4.76 5.75 17.97 78.76
10 - 5.26 3.27 7.74 7.03 25.99 81.53
20 - 11.08 5.89 14.35 11.43 41.34 86.08

Conclusion

We demonstrate that this approach is a reliable forecasting tool, with its improved
performance stemming from two key features: capturing non-linear relationships
by transforming input data into a higher-dimensional space and operating as a
supervised method, filtering out irrelevant factors.

Miscellaneous

We use the rolling window method to compute OOS R2 and cross-validation to
select tuning parameters.
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